Assignment 10

Due on 2020-11-26, 23:59:59 IST.

1. Let \(M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \). Then, which of the following is an incorrect option?
 - The eigenvalues of \(M \) are \(\lambda_1 = -1 \) and \(\lambda_2 = 1 \).
 - The eigenvalues of \(M \) are \(\lambda_1 = -1 \) and \(\lambda_2 = -1 \).
 - The eigenvalues of \(M \) are \(\lambda_1 = 5 \) and \(\lambda_2 = 1 \).

2. Let \(M = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} \). Then, which of the following is an incorrect option?
 - The eigenvalues of \(M \) are \(\lambda_1 = 1 \) and \(\lambda_2 = 2 \).
 - The eigenvalues of \(M \) are \(\lambda_1 = 2 \) and \(\lambda_2 = 1 \).
 - The eigenvalues of \(M \) are \(\lambda_1 = 3 \) and \(\lambda_2 = 1 \).

3. Let \(M = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \). Then, which of the following is an incorrect option?
 - \(\lambda_1 = 1 \) is not an eigenvalue of \(M \).
 - \(\lambda_2 = 2 \) is an eigenvalue of \(M \).
 - \(\lambda_1 = 0 \) is an eigenvalue of \(M \).

4. Let \(M = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \). Then, which of the following is an incorrect option?
 - \(\lambda_1 = 3 \) is an eigenvalue of \(M \).
 - \(\lambda_2 = 0 \) is an eigenvalue of \(M \).
 - \(\lambda_3 = 3 \) is not an eigenvalue of \(M \).

5. Let \(M = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \). Then, which of the following is an incorrect option?
 - \(\lambda_1 = 1 \) is an eigenvalue of \(M \).
 - \(\lambda_2 = 2 \) is an eigenvalue of \(M \).
 - \(\lambda_3 = 0 \) is an eigenvalue of \(M \).

6. Let \(M = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \). Then, which of the following is an incorrect option?
 - \(\lambda_1 = 1 \) is an eigenvalue of \(M \).
 - \(\lambda_2 = 2 \) is an eigenvalue of \(M \).
 - \(\lambda_3 = 0 \) is an eigenvalue of \(M \).

7. Let \(M = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \). Then, which of the following is an incorrect option?
 - \(\lambda_1 = 2 \) is an eigenvalue of \(M \).
 - \(\lambda_2 = 0 \) is an eigenvalue of \(M \).
 - \(\lambda_3 = 2 \) is an eigenvalue of \(M \).

8. Let \(M = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \). Then, which of the following is an incorrect option?
 - \(\lambda_1 = 1 \) is an eigenvalue of \(M \).
 - \(\lambda_2 = 2 \) is an eigenvalue of \(M \).
 - \(\lambda_3 = 0 \) is an eigenvalue of \(M \).

9. Let \(M = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \). Then, which of the following is an incorrect option?
 - \(\lambda_1 = 1 \) is an eigenvalue of \(M \).
 - \(\lambda_2 = 2 \) is an eigenvalue of \(M \).
 - \(\lambda_3 = 0 \) is an eigenvalue of \(M \).

10. Let \(M = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \). Then, which of the following is an incorrect option?
 - \(\lambda_1 = 1 \) is an eigenvalue of \(M \).
 - \(\lambda_2 = 2 \) is an eigenvalue of \(M \).
 - \(\lambda_3 = 0 \) is an eigenvalue of \(M \).