Curves and Surfaces: Solutions to Assignment 1

Qn 1.

Arc length \(s(t) = \int_{a}^{t} \| \dot{\gamma}(u) \| \, du \) is independent of parametrization: use the change of variable \(t \rightarrow \varphi(t) \) \(\text{[3]} \).

\(s \) is a smooth function of \(t \): \(\frac{ds}{dt} = \| \dot{\gamma}(t) \| \text{ [2]} \).

Qn 2.

Let \(\widetilde{\gamma}(t) = \gamma(\varphi(t)) \) where \(\varphi \) is the reparametrization. Let \(\gamma = \varphi^{-1} \) so that \(t = \varphi(t) \).

\(\varphi(\varphi(t)) = t \)

differentiate both sides with \(t \Rightarrow \frac{d\varphi}{dt} \frac{dt}{d\varphi} = 1 \)

\(\Rightarrow \frac{d\varphi}{dt} = \frac{1}{\frac{dt}{d\varphi}} \neq 0 \text{ or } \tilde{\varphi} \).

Next: \(\frac{d\widetilde{\gamma}}{dt} = \frac{d\gamma}{dt} \frac{dt}{d\varphi} \)

This \(\frac{d\widetilde{\gamma}}{dt} \) is never zero if \(\frac{d\gamma}{dt} \) is never zero. \(\text{[2]} \).
\[\mathcal{X} : (-1,1) \to \mathbb{R}^2, \quad x(t) = (t^3, t^6) \]

\[\dot{x}(t) = (3t^2, 6t^5) \quad \dot{x}(0) = 0 \]

So \(\dot{x} \) is not regular. By theorem done in lecture, \(\mathcal{X} \) does not have unit speed reparametrization. \[\text{[3]} \]

Unit speed reparametrization of \((x-x_0) + (y-y_0) = R^2\)

is \(\dot{x}(s) = (x_0 + R\cos \frac{\alpha}{R}, y_0 + R\sin \frac{\alpha}{R}) \)

\[\text{[12]} \]

Qn 4

(a) Recall: If two unit speed plane curves has same curvature then one may be obtained from other by a rigid motion of \(\mathbb{R}^2 \).

If \(K_1 = K_2 \), we have the circle

\[\mathcal{X}(s) = (\cos \frac{\alpha}{K_2}, \sin \frac{\alpha}{K_2}) \]

curvature is \(K_2 \).

Any rigid motion takes a circle to circle.

\[\text{[2]} \]

(b) \(K(x) = K \). Start at \(\dot{x}(0) = 0 \)

\[t(s) = \int_0^s |\dot{x}(u)| \, du = s^{1/2} \]

\[x(s) = \left(\int_0^s \cos \frac{s^{1/2} \, dt}{\sqrt{2}}, \int_0^s \sin \frac{s^{1/2} \, dt}{\sqrt{2}} \right) \]

Cornue's spiral

Can you plot it numerically? \[\text{[2]} \]
(a) The circle passes through \(z(3) \) because
\[\| z - z_1 \| = \| \frac{1}{k_5} n_5 \| = \frac{1}{|k_5|} \] which is the radius of the circle.
\[E - z = \frac{1}{k_5} n_5 \] is perpendicular to the tangent \(T \) at \(z \). Hence the circle is tangent to \(T \).
The curvature of the circle is \(\frac{1}{\text{Radius}} \), hence
\[k_5 - \text{Curvature of } T \]. \[\frac{1}{k_5} \]

(b) \(E(t) = t + \frac{1}{k_5} (-k_5 t) = \frac{k_5}{k_5^2} n_5 \), \(n_5 = -\frac{k_5}{k_5^2} n_5 \)
arc length of \(E(t) = u_0 - \frac{1}{k_5} \) for some constant \(u_0 \).
Unit tangent vector of \(E \) is \(-n_5 \) and signed unit normal is \(\frac{T}{k} \).
now \(-\frac{dn_5}{du} = \frac{k_5}{k_5} T \) \(\Rightarrow \) signed curvature
of \(E \) is \(k_5^3 / k_5 \).
The free part of the string is long out to \(\gamma \) at \(\gamma(x) \) and has length \(l-d \). Hence the curve traced out is

\[
\gamma(x) = (l-x) \gamma(x)
\]

In the text, see any books referred for the course.

On 8, we need to describe curves up to rigid motions in \(\mathbb{R}^3 \).

Put

\[
a = \frac{k}{k^2 + z^2}, \quad b = \frac{z}{k^2 + z^2}
\]

Circular helix \(\gamma(\theta) = (a \cos \theta, a \sin \theta, b \theta) \) has curvature \(k \) and torsion \(b \).