1. Express $x^2 + xy + y^2 = \text{in powers of } (x - 1) \text{ and } (y - 2). \text{ (Use Taylor’s formula)}$.

2. Let f be real-valued and assume that the directional derivatives $D_u f(x + tu)$ exits for each $t \in [0, 1]$. Prove that for some $\theta \in (0, 1)$ we have $f(x + u) - f(x) = D_u f(x + \theta u)$.

3. If f is real-valued and if the directional derivatives $D_u f(x) = 0$ for every x in an open ball $B(x, \delta)$ and every directions u, prove that f is constant on $B(x, \delta)$.

4. Investigate the following functions for maxima and minima or saddle points.
 (a) $f : \mathbb{R}^3 \rightarrow \mathbb{R}, f(x, y, z) = x^2 y + y^2 z + z^2 - 2x$.
 (b) $f : \mathbb{R}^3 \rightarrow \mathbb{R}, f(x, y, z) = (ax^2 + by^2 + cz^2)e^{-x^2-y^2-z^2}$.

5. Let $f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$, U open, has continuous first and second order partial derivatives and $X \in U$ is a stationary point for f. Let $H = \left(\frac{\partial^2 f}{\partial x_i \partial x_j} \right)$ be the second derivative of f at X. Denote by H_k the kth principal minor of H.

 Prove the following:
 (a) If $\det H_k < 0$ for some $k = 1, 2, \ldots, n$ then X is a saddle point.
 (b) If $\det H \neq 0$ then
 (i) f has a local minimum at X if and only if $\det H_k > 0$ for all k.
 (ii) f has a local minimum at X if and only if $(-1)^k \det H_k > 0$ for all k.
 (iii) f has a saddle point at X if and only if it is neither local maximum or minimum.
 (c) If $\det H = 0$ then the test is inconclusive (give an example).

6. Find the shortest distance from the point $(a, 0)$ to the parabola $y^2 + 4x = 0$.
7. Find the point on the line of intersection of the two planes $ax + by + cz + d = 0$ and $a_1x + b_1y + c_1z + d_1 = 0$ which is nearest to the origin.