Unit 8 - Week 5: Non-Mean-Variance Portfolio Theory

Assignment 5

Due on 2023-10-21, 23:59:59 IST.

1. Consider two investment opportunities A and B, for an investor with utility function \(U(W) = W^{0.5} \).
 Opportunity A: An investment of $500 has 100% chance of either gaining $50 with probability \(\frac{1}{2} \) or losing $50 with probability \(\frac{1}{2} \).
 Opportunity B: An investment of $100 has 10% chance of gaining $100 and 90% chance of losing $100.
 Then the difference \(E(U(W)) - E(U(W)) \) equals:
 - []
 - []

2. Consider the following Table:

<table>
<thead>
<tr>
<th>Returns</th>
<th>Probability</th>
<th>(q_2)</th>
<th>Probability</th>
<th>(q_3)</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5%</td>
<td>0.8</td>
<td>0.3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td>0</td>
<td>0.2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>0.2</td>
<td>0.5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 If the utility function is \(U(r) = r^2 \), and if the expected utility of returns of assets \(q_1, q_2 \) and \(q_3 \), are \(E(U(q_1)), E(U(q_2)) \) and \(E(U(q_3)) \), respectively, then \(\frac{E(U(q_1)) + E(U(q_2))}{E(U(q_3))} \) equals:
 - []
 - []

3. Consider an investment opportunity, where an investment of $600, either results in the gain being $300 with probability \(\frac{1}{2} \),
 or results in the loss being $200 with probability \(\frac{1}{2} \).
 If the utility function is \(U(W) = \ln(W) \), then the Certainty Equivalent (CE) equals:
 - []
 - []

4. An investor has the utility function \(U(W) = W^{0.5} \) and is indifferent between receiving $100 and $80,
 with equal probabilities or $150 with certainty, then the value of \(\gamma \) equals:
 - []
 - []

5. Which of the following utility function represents a risk-averse investor?
 - []
 - []

6. Which of the following holds in case of an investor with the quadratic utility
 \(U(W) = 2W - 0.9W^2 \) ?
 - []
 - []
 - []
 - Decreasing AEA and Decreasing RRA
 - Increasing AEA and Decreasing RRA
 - Decreasing AEA and Increasing RRA
 - Increasing AEA and Increasing RRA

7. If \(A(W) \) is the AEA of utility function \(U(W) \), then the AEA for \(U(W) = a + bU(W) \) is given by:
 - []
 - []
 - []
 - []
 - []

8. Which of the following holds in case of a risk-loving investor?
 - []
 - []

9. Which of the following holds in case of a risk-averse investor?
 - []
 - []
 - []
 - []
 - []

10. Which of the following holds in case of a risk-neutral investor?
 - []
 - []
 - []
 - []
 - []