Unit 13 - Week 11: Risk-Neutral Pricing in Continuous-Time (Part 1)

Assignment

Due on 2019-10-16, 23:59 IST.

1. In the classical BSM model (with given parameters a, r, and o), which of the following statements are true?

The stock price process (X_t) is a martingale under the risk-neutral probability measure \mathbb{P}.

\[E(X_t) = 2a - r, \quad \text{for } T > 0 \text{ (under the actual probability measure \mathbb{P}).} \]

\[V_t = \frac{a}{2} + r, \quad \text{for } 0 \leq t \leq T \text{ (under the actual probability measure \mathbb{P}).} \]

The risk-neutral probability measure \mathbb{P} can be obtained by taking any constant value for θ in the Girsanov theorem.

No, the answer is incorrect.

Score: 0

Accepted Answers:

No, the answer is incorrect.

Score: 0

Accepted Answers:

2. State whether the following statement is TRUE or FALSE.

The classical BSM model (with given parameters a, r, and o) if

$K_T = \frac{1}{2} \ln T$ is the continuously compounded rate of return per annum realized between times 0 and T, then $K_T - X_t$ under the real-world probability measure \mathbb{P}.

TRUE

No, the answer is incorrect.

Score: 0

Accepted Answers:

No, the answer is incorrect.

Score: 0

Accepted Answers:

3. State whether the following statement is TRUE or FALSE.

The classical BSM model (with given parameters a, r, and o), if the mean rate of return of the stock is twice that of the return on the riskless asset, $a = 20\%$ and the market price of risk equals 0.4, then the riskless rate of return (as an annualized return) equals α.

TRUE

No, the answer is incorrect.

Score: 0

Accepted Answers:

No, the answer is incorrect.

Score: 0

Accepted Answers:

4. State whether the following statement is TRUE or FALSE.

In the classical BSM model (with given parameters a, r, and o), if X_t is a European derivative with payoff

\[V_t = \frac{1}{3} - \frac{1}{3} S_t, \quad \text{for } 0 \leq t \leq T \]

is a path independent derivative.

TRUE

No, the answer is incorrect.

Score: 0

Accepted Answers:

No, the answer is incorrect.

Score: 0

Accepted Answers:

5. State whether the following statement is TRUE or FALSE.

In the classical BSM model (with given parameters a, r, and o), if X_t is a European derivative with payoff $V_t = \frac{1}{3} - \frac{1}{3} S_t$, then $\frac{dS_t}{S_t} = \alpha dt + o dW_t$ is a martingale under both P and \mathbb{P}.

TRUE

No, the answer is incorrect.

Score: 0

Accepted Answers:

No, the answer is incorrect.

Score: 0

Accepted Answers:

6. State whether the following statement is TRUE or FALSE.

In the classical BSM model (with given parameters a, r, and o), if X_t is a European derivative with payoff $V_t = \frac{1}{3} - \frac{1}{3} S_t$, then $\frac{dS_t}{S_t} = \alpha dt + o dW_t$ is a martingale under both P and \mathbb{P}.

TRUE

No, the answer is incorrect.

Score: 0

Accepted Answers:

No, the answer is incorrect.

Score: 0

Accepted Answers:

7. State whether the following statement is TRUE or FALSE.

In the classical BSM model (with given parameters a, r, and o), if X_t is a European derivative with payoff $V_t = \frac{1}{3} - \frac{1}{3} S_t$, then $\frac{dS_t}{S_t} = \alpha dt + o dW_t$ is a martingale under both P and \mathbb{P}.

TRUE

No, the answer is incorrect.

Score: 0

Accepted Answers:

No, the answer is incorrect.

Score: 0

Accepted Answers:

8. State whether the following statement is TRUE or FALSE.

In the classical BSM model (with given parameters a, r, and o), if X_t is a European derivative with payoff $V_t = \frac{1}{3} - \frac{1}{3} S_t$, then $\frac{dS_t}{S_t} = \alpha dt + o dW_t$ is a martingale under both P and \mathbb{P}.

TRUE

No, the answer is incorrect.

Score: 0

Accepted Answers: