Assignment 10

The due date for submitting this assignment has passed.
As per our records, you have not submitted this assignment.

1) Let \(X_t \) for \(t \leq s \), denote the greatest integer less than or equal to \(s \).
Then, which of the following functions defined on \([0, m]\) can represent a sample path of a simple process?
\[
\begin{align*}
S_1(s) &= s \\
S_2(s) &= s^2 \\
S_3(s) &= \lfloor s \rfloor \\
S_4(s) &= \lfloor 2s \rfloor
\end{align*}
\]

No, the answer is incorrect. Score: 0

Accepted Answers:
- \(S_3(s) \)

2) If the stochastic process \(\{X_t\} \) satisfies \(dX_t = -aX_tdt + \sigma dW_t, \) \(X_0 = 0 \), where \(a, \sigma \) are positive constants, and \(\{W_t\} \) is a Brownian motion, then which of the following is/are true?
\[
\begin{align*}
X_t &= A(t) - \sigma \int_0^t \exp(-\sigma s) dW_s \\
X_t &= A(t) - \sigma \int_0^t \exp(-\sigma s) dt \\
X_t &= A(t) - \frac{\sigma}{\sigma^2 + 1} \\
X_t &= A(t) - \sigma \int_0^t \exp(-\sigma s) dW_s
\end{align*}
\]

No, the answer is incorrect. Score: 0

Accepted Answers:
- \(X_t = A(t) - \sigma \int_0^t \exp(-\sigma s) dW_s \)

3) State whether the following statement is TRUE or FALSE:
If \(f = \int_0^t \sigma dW_s \) then the quadratic variation of \(f \) equals the variance of \(f \).

TRUE

4) State whether the following statement is TRUE or FALSE:
The quadratic variation of an \(\mathcal{F}_t \)-process is always equal to the quadratic variation of the corresponding \(\mathcal{F}_t \)-integrable process.

TRUE

5) Let \(X_t = \int_0^t X_s dW_s \), where \(X_t \) takes the value 1 for \(0 \leq t < 2 \), takes the value 3 for \(2 \leq t \leq 3 \) and takes the value 0 otherwise.
Then, which of the following is/are true?

\(\{X_t\} \) is a martingale.

No, the answer is incorrect. Score: 0

Accepted Answers:
- \(\{X_t\} \) is a martingale.

6) The process \(\{W_t^2 - t\} \) is a martingale.

No, the answer is incorrect. Score: 0

Accepted Answers:
- \(\{W_t^2 - t\} \) is a martingale.

7) State whether the following statement is TRUE or FALSE:
For \(X_t = W_t \) and \(Y_t = e^{\alpha t} \), we have that \(\mathbb{E}(W_t^2) = e^{\alpha^2 t} \).

TRUE

8) State whether the following statement is TRUE or FALSE:
For \(X_t = W_t \) and \(Y_t = e^{\alpha t} \), we have that \(\mathbb{E}(W_t^2) = e^{\alpha^2 t} \).

No, the answer is incorrect. Score: 0

Accepted Answers:
- \(\mathbb{E}(W_t^2) = e^{\alpha^2 t} \)