Assignment 8

Due on 2019-09-25, 23:59 IST.

5 point

In a three-period binomial model, if \(E(S_3 | S_0 = s) = g(s) \), then the number of possible non-zero values of the function \(g(s) \) equals:

No, the grader is incorrect.

Question 5

5 point

State whether the following statement is TRUE or FALSE:
In an \(N \)-period binomial model, the process \(\{ Y_n, 0 \leq n \leq N \} \), where \(Y_n = S_{n+1} - S_n \), is adopted to the filtration \(\{ F_n \}_{n=0}^{N} \), where \(F_n \) is the \(\sigma \)-field containing the sets determined by the first \(n \) times.

TRUE

FALSE

No, the grader is incorrect.

Question 6

5 point

Consider an \(N \)-period binomial model setup with the filtration \(\{ F_n \}_{n=0}^{N} \), where \(F_n \) is the \(\sigma \)-field containing the sets determined by the first \(n \) times. Then which of the following is \(n \) not always true?

(A) \(E(S_3 | F_2) \neq E(S_3 | F_1) \)

(B) \(E(E(S_3 | F_2) | F_2) = E(S_3 | F_2) \)

(C) \(E(E(S_3 | F_2) | F_2) = E(S_3 | F_2) \)

(D) \(E(E(S_3 | F_2) | F_2) = E(S_3) \)

No, the grader is incorrect.

Question 7

5 point

State whether the following statement is TRUE or FALSE:
In an \(N \)-period binomial model setup, the stock price process \(\{ S_n, 0 \leq n \leq N \} \) is both a martingale and a Markov process.

TRUE

FALSE

No, the grader is incorrect.

Question 8

2 points

Which of the following is always true for discrete-time stochastic processes?

(A) Every martingale is both a submartingale and a supermartingale.

(B) A process which is a submartingale is also a martingale.

(C) If \(\{ M_n \}_{n=0}^{N} \) is a martingale and \(\phi(s) \) is a convex function, then \(E(\phi(M_n)) \) is an increasing sequence.

(D) Given a random variable \(Z \) with \(E(Z) < \infty \) and given a filtration \(\{ F_n \}_{n=0}^{N} \), the process \(\{ Z_n \} \) defined by \(Z_n = E(Z | F_n) \) is Radon-Nikodym derivative process.

No, the grader is incorrect.

Question 9

5 point

State whether the following statement is TRUE or FALSE:
In an \(N \)-period binomial model setup, the no-arbitrage price \(V_0 \) at time \(n \) of a derivative with payoff \(V_n = \max(S_n - S_0, 0) \) can be written as \(V_0 = h(S_0) \) for some real valued function \(h \).

TRUE

FALSE

No, the grader is incorrect.

Question 10

5 point

Which of the following is always true in an \(N \)-period binomial model setup?

(A) The risk-neutral probability measure is unique.

(B) The expectation of the random variable \(S_n \) under the real-world probability measure is always greater than or equal to the expectation of \(S_n \) under the risk-neutral measure.

(C) The initial price of an American option and an American option with the same payoff function is the same if the payoff functions are path-independent.

No, the grader is incorrect.

Question 11

2 points

In a three-period binomial model with parameters \(n = 1, d = 0.96, r = 0.03 \) and \(S_0 = 00 \), the initial price of an American put option that expires at time three and has a strike price of 62 equals:

No, the grader is incorrect.

Question 12