Assignment 4

Due on 2025-10-14, 23:59 IST.

1. If one of the eigenvalues of A_{nu} is zero, it implies:
 - The solution to $Ax=b$ system of equations is unique
 - The determinant of A is zero
 - The solution to $Ax=0$ system of equations is trivial
 - The dimension of A is nonzero

2. Which of the following is not involved in Gaussian elimination method? (1 point)
 - Elimination of Unknowns
 - Reduction to an upper triangular system
 - Finding unknowns by back substitution
 - Evaluation of cofactors

3. What is the value of n_1?
 - 1.625
 - 0.648
 - 0.6
 - None of these

4. The total number of multiplications/divisions required to apply Gaussian elimination method is:
 - $\frac{n(n-1)}{2}
 - n^3
 - n^2
 - $n+1$

5. What is the principle of LU factorization method? (1 point)
 - There exists an inverse for a singular matrix.
 - Determinant of an identity matrix is one.
 - Every square matrix can be expressed as a product of a lower triangular matrix and upper triangular matrix.
 - Every matrix can be expressed as a sum of a skew-symmetric matrix and symmetric matrix.

6. Apply LU factorization method for solving the following equations:
 $$3x + 2y + z = 6
 2x + 3y + z = 5
 3x + 4y + z = 7$$
 What is the value of z?
 - 1
 - 2
 - 3
 - None of these

7. Close the linear system
 $$2x + 3y = 1
 3x + 2y = 5$$
 What is the value of x for which the system has all solutions?
 - 1
 - 2
 - 3
 - None of these

8. The LU factorization requires:
 - L multiplication/divisions
 - U subtraction
 - L addition/subtractions
 - U addition/subtractions

9. Which of the following matrices are diagonally dominant?
 - $\begin{bmatrix} 2 & -1 \\ 1 & 5 \end{bmatrix}$
 - $\begin{bmatrix} 0 & -1 \\ 1 & 5 \end{bmatrix}$
 - Both (a) and (b)
 - None of these

10. The Cholesky factorization of positive definite matrix:
 $$A = LDL^T = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 10 \end{bmatrix}$$
 What is the matrix L?
 - $\begin{bmatrix} 2 & 0 \\ 0.5 & 1 \end{bmatrix}$
 - $\begin{bmatrix} 2 & 0 \\ 0.5 & 10 \end{bmatrix}$
 - Both (a) and (b)
 - None of these