Assignment 5

This is the place where you submit this assignment.

Due on: 2020-03-04, 23:00 IST.

1. Which of the following statements hold true for a perfectly correlated pair of random variables (X, Y)? (1 point)
 - X and Y are independent.
 - X and Y are not independent.
 - X and Y are identically distributed.
 - X and Y have the same variance.

Correct Answer: X and Y are not independent.

2. A random variable X follows a normal distribution with mean 0 and variance 1. What is the variance of X^2? (1 point)
 - 1
 - 2
 - 3

Correct Answer: 2

Note: The following statements are true:

- If two random variables are independent, then their covariance is zero.
- If the correlation between two random variables is zero, then the variables do not have any kind of linear relationship but can still be dependent.
- If the correlation between two random variables is zero, then both the variables are independent.
- There is no relationship between independence of random variables and their covariance.

Problem 1

Statement:

A random variable X follows a normal distribution with mean 0 and variance 1. What is the variance of X^2?

Solution:

Assume that X is a random variable following a normal distribution $N(0, 1)$.

Answer:

X^2 is a chi-squared random variable with 1 degree of freedom. Therefore, the variance of X^2 is 2.

Note: The following statements are true:

- If two random variables are independent, then their covariance is zero.
- If the correlation between two random variables is zero, then the variables do not have any kind of linear relationship but can still be dependent.
- If the correlation between two random variables is zero, then both the variables are independent.
- There is no relationship between independence of random variables and their covariance.

Problem 2

Statement:

A random variable X follows a normal distribution with mean 0 and variance 1. What is the variance of X^2?

Solution:

Assume that X is a random variable following a normal distribution $N(0, 1)$.

Answer:

X^2 is a chi-squared random variable with 1 degree of freedom. Therefore, the variance of X^2 is 2.

Note: The following statements are true:

- If two random variables are independent, then their covariance is zero.
- If the correlation between two random variables is zero, then the variables do not have any kind of linear relationship but can still be dependent.
- If the correlation between two random variables is zero, then both the variables are independent.
- There is no relationship between independence of random variables and their covariance.

Problem 3

Statement:

A random variable X follows a normal distribution with mean 0 and variance 1. What is the variance of X^2?

Solution:

Assume that X is a random variable following a normal distribution $N(0, 1)$.

Answer:

X^2 is a chi-squared random variable with 1 degree of freedom. Therefore, the variance of X^2 is 2.

Note: The following statements are true:

- If two random variables are independent, then their covariance is zero.
- If the correlation between two random variables is zero, then the variables do not have any kind of linear relationship but can still be dependent.
- If the correlation between two random variables is zero, then both the variables are independent.
- There is no relationship between independence of random variables and their covariance.

Problem 4

Statement:

A random variable X follows a normal distribution with mean 0 and variance 1. What is the variance of X^2?

Solution:

Assume that X is a random variable following a normal distribution $N(0, 1)$.

Answer:

X^2 is a chi-squared random variable with 1 degree of freedom. Therefore, the variance of X^2 is 2.

Note: The following statements are true:

- If two random variables are independent, then their covariance is zero.
- If the correlation between two random variables is zero, then the variables do not have any kind of linear relationship but can still be dependent.
- If the correlation between two random variables is zero, then both the variables are independent.
- There is no relationship between independence of random variables and their covariance.

Problem 5

Statement:

A random variable X follows a normal distribution with mean 0 and variance 1. What is the variance of X^2?

Solution:

Assume that X is a random variable following a normal distribution $N(0, 1)$.

Answer:

X^2 is a chi-squared random variable with 1 degree of freedom. Therefore, the variance of X^2 is 2.

Note: The following statements are true:

- If two random variables are independent, then their covariance is zero.
- If the correlation between two random variables is zero, then the variables do not have any kind of linear relationship but can still be dependent.
- If the correlation between two random variables is zero, then both the variables are independent.
- There is no relationship between independence of random variables and their covariance.

Problem 6

Statement:

A random variable X follows a normal distribution with mean 0 and variance 1. What is the variance of X^2?

Solution:

Assume that X is a random variable following a normal distribution $N(0, 1)$.

Answer:

X^2 is a chi-squared random variable with 1 degree of freedom. Therefore, the variance of X^2 is 2.

Note: The following statements are true:

- If two random variables are independent, then their covariance is zero.
- If the correlation between two random variables is zero, then the variables do not have any kind of linear relationship but can still be dependent.
- If the correlation between two random variables is zero, then both the variables are independent.
- There is no relationship between independence of random variables and their covariance.

Problem 7

Statement:

A random variable X follows a normal distribution with mean 0 and variance 1. What is the variance of X^2?

Solution:

Assume that X is a random variable following a normal distribution $N(0, 1)$.

Answer:

X^2 is a chi-squared random variable with 1 degree of freedom. Therefore, the variance of X^2 is 2.

Note: The following statements are true:

- If two random variables are independent, then their covariance is zero.
- If the correlation between two random variables is zero, then the variables do not have any kind of linear relationship but can still be dependent.
- If the correlation between two random variables is zero, then both the variables are independent.
- There is no relationship between independence of random variables and their covariance.

Problem 8

Statement:

A random variable X follows a normal distribution with mean 0 and variance 1. What is the variance of X^2?

Solution:

Assume that X is a random variable following a normal distribution $N(0, 1)$.

Answer:

X^2 is a chi-squared random variable with 1 degree of freedom. Therefore, the variance of X^2 is 2.

Note: The following statements are true:

- If two random variables are independent, then their covariance is zero.
- If the correlation between two random variables is zero, then the variables do not have any kind of linear relationship but can still be dependent.
- If the correlation between two random variables is zero, then both the variables are independent.
- There is no relationship between independence of random variables and their covariance.

Problem 9

Statement:

A random variable X follows a normal distribution with mean 0 and variance 1. What is the variance of X^2?

Solution:

Assume that X is a random variable following a normal distribution $N(0, 1)$.

Answer:

X^2 is a chi-squared random variable with 1 degree of freedom. Therefore, the variance of X^2 is 2.

Note: The following statements are true:

- If two random variables are independent, then their covariance is zero.
- If the correlation between two random variables is zero, then the variables do not have any kind of linear relationship but can still be dependent.
- If the correlation between two random variables is zero, then both the variables are independent.
- There is no relationship between independence of random variables and their covariance.

Problem 10

Statement:

A random variable X follows a normal distribution with mean 0 and variance 1. What is the variance of X^2?

Solution:

Assume that X is a random variable following a normal distribution $N(0, 1)$.

Answer:

X^2 is a chi-squared random variable with 1 degree of freedom. Therefore, the variance of X^2 is 2.

Note: The following statements are true:

- If two random variables are independent, then their covariance is zero.
- If the correlation between two random variables is zero, then the variables do not have any kind of linear relationship but can still be dependent.
- If the correlation between two random variables is zero, then both the variables are independent.
- There is no relationship between independence of random variables and their covariance.