Assignment 11

Problem 1: Let X_1, X_2, \ldots be independent random variables each with mean μ and variance σ^2. Show that $\text{Var}(\sum_{i=1}^{n} X_i) = n\sigma^2$.

Problem 2: Let Y_1, Y_2, \ldots be a sequence of independent random variables each with mean μ and variance σ^2. Show that $\text{Var}(\sum_{i=1}^{n} Y_i) = n\sigma^2$.

Problem 3: Let Z_1, Z_2, \ldots be a sequence of independent random variables each with mean μ_1 and variance σ_1^2. Show that $\text{Var}(\sum_{i=1}^{n} Z_i) = n\sigma_1^2$.

Problem 4: Let X_1, X_2, \ldots be a sequence of independent random variables each with mean μ and variance σ^2. Show that $\text{Var}(\sum_{i=1}^{n} X_i) = n\sigma^2$.

Problem 5: Let Y_1, Y_2, \ldots be a sequence of independent random variables each with mean μ and variance σ^2. Show that $\text{Var}(\sum_{i=1}^{n} Y_i) = n\sigma^2$.

Problem 6: Let Z_1, Z_2, \ldots be a sequence of independent random variables each with mean μ_1 and variance σ_1^2. Show that $\text{Var}(\sum_{i=1}^{n} Z_i) = n\sigma_1^2$.

Problem 7: Let X_1, X_2, \ldots be a sequence of independent random variables each with mean μ and variance σ^2. Show that $\text{Var}(\sum_{i=1}^{n} X_i) = n\sigma^2$.

Problem 8: Let Y_1, Y_2, \ldots be a sequence of independent random variables each with mean μ and variance σ^2. Show that $\text{Var}(\sum_{i=1}^{n} Y_i) = n\sigma^2$.

Problem 9: Let Z_1, Z_2, \ldots be a sequence of independent random variables each with mean μ_1 and variance σ_1^2. Show that $\text{Var}(\sum_{i=1}^{n} Z_i) = n\sigma_1^2$.