Assignment 9

Due on 2019-02-22, 23:59 EST.

The due date for submitting the assignment has passed. As per our regulations, you have not submitted this assignment.

NOTE: In this assignment, answers that differ may be acceptable.

1. Let set \(A = \{x \in \mathbb{R}^2 | x_1 + x_2 = 0\} \) be a subset of a Hilbert space \(H \). Which of the following is true?
 - A. \(A \) is linearly independent.
 - B. \(A \) is linearly dependent.

2. Show that \(\mathbb{R}^2 \) is an inner product space with the following inner product:
 \[\langle (x_1, x_2), (y_1, y_2) \rangle = x_1y_1 + x_2y_2 \]

3. Let \(\{v_1, v_2, v_3\} \) be an orthonormal basis for a Hilbert space \(H \). Define set \(S = \{v_1, v_2, v_3\} \).
 - a. Show that \(S \) is linearly independent.
 - b. Show that \(S \) is linearly dependent.
 - c. Show that \(S \) is a basis.
 - d. Show that \(S \) is not a basis.

4. If \(f(x) = x^3 + 2x^2 + 3x + 4 \), then which of the following is true?
 - A. \(f(1) = 10 \)
 - B. \(f(-1) = -5 \)
 - C. \(f(0) = 4 \)

5. Consider the set \(T = \{v_1, v_2\} \) in \(H^2 \) then show that \(T \) is an orthonormal set.
 - a. Show that \(T \) is linearly independent.
 - b. Show that \(T \) is linearly dependent.

6. The Fourier transform of the triangle function
 \[f(x) = \begin{cases} 0 & |x| > 1 \\ \frac{1}{2} & |x| < 1 \end{cases} \]
 is given by \(\hat{f}(\xi) = \frac{\sin(\xi)}{\xi} \).
 - a. Compute \(\hat{f}(0) \).
 - b. Compute \(\hat{f}(\infty) \).

7. Let \(T \) be the Frobenius transformation of the characteristic function
 \[f(x) = \begin{cases} 1 & x < 0 \\ 0 & x \geq 0 \end{cases} \]
 then show \(\langle f, \phi \rangle = 0 \).
 - a. Compute \(\langle f, \phi \rangle \).
 - b. Compute \(\langle f, \phi \rangle \) when \(\phi(x) = 1 \).

8. Let \(f(x) \) be an \(L^2 \) function and \(\hat{f}(x) \) is the Fourier transform of \(f(x) \) then
 - a. If \(f(x) \) can be written as \(\int_{-\infty}^{\infty} d\xi \langle \phi, f(x) \rangle \) \(\phi(\xi) \), then show \(\langle \phi, f(x) \rangle \phi(\xi) \).
 - b. Show that \(\phi(\xi) \) may or may not be \(L^2 \) functions.

9. Consider the set \(T = \{(0,2,0), (x,0,y) | x, y \in \mathbb{R} \} \) then show that
 - a. \(T \) is linearly independent.
 - b. \(T \) is not a basis.
 - c. \(T \) is an orthonormal set.

10. Let \(\phi(x) \) be the Fourier transform of the characteristic function
 \[f(x) = \begin{cases} 0 & x < 0 \\ 1 & x \geq 0 \end{cases} \]
 then show \(\langle \phi, f(x) \rangle = 0 \).
 - a. Compute \(\langle \phi, f(x) \rangle \).
 - b. Compute \(\langle \phi, f(x) \rangle \) when \(\phi(x) = 1 \).