Stochastic Processes
Assignment (Week 12)

1. Let \(\{X(t), t \geq 0\} \) be a stochastic process. Which of the following is always TRUE?
 (a) If \(\{X(t), t \geq 0\} \) is a second-order process then it must be a wide-sense stationary process.
 (b) If \(\{X(t), t \geq 0\} \) is a wide sense stationary process then it must be a second order process.
 (c) If \(\{X(t), t \geq 0\} \) is a second order process with constant mean then it must be a wide-sense stationary process.
 (d) \(\{X(t), t \geq 0\} \) always has independent increments.

2. Consider the process \(\{X(t), t \geq 0\} \), where
 \[X(t) = Acos(\theta t) + Bsin(\theta t), \]
 where \(A \) and \(B \) are known to be uncorrelated random variables each with mean and variance as 0 and \(\sigma^2 \) respectively and \(\theta \) is a constant.
 (a) \(E(X(t)) = 0 \)
 (b) \(Cov(X(t), X(s)) \) is not a function of \(|t - s| \)
 (c) \(E(X(t)^2) = \sigma^2 \)
 (d) \(\{X(t), t \geq 0\} \) is a wide-sense stationary process.

3. Let \(Z_1 \) and \(Z_2 \) be two independent normally distributed random variables, each having mean 0 and variance \(\sigma^2 \). Let \(\lambda \in \mathbb{R} \). Define \(X_t = Z_1 \cos \lambda t + Z_2 \sin \lambda t \). Which of the following is not TRUE?
 (a) \(\{X(t), t \geq 0\} \) is a second order process.
 (b) \(E(X(t)) = 0 \).
 (c) \(E(X(t)^2) \)
 (d) \(\{X(t), t \geq 0\} \) is a wide sense stationary process.

4. In a communication system, a carrier signal at a receiver is modeled as a stochastic process \(\{X(t) = \cos(2\pi ft + \theta); t \geq 0\} \) where \(\theta \in [-\pi, \pi] \) and \(f \) is a constant.
 (a) \(\{X(t), t \geq 0\} \) is a second order process.
 (b) \(E(X(t)) = 0 \).
 (c) \(Cov(X(t), X(s)) \) is a function of \(|t - s| \)
 (d) \(\{X(t), t \geq 0\} \) is a wide sense stationary process.

5. Let \(\{X(t), t \geq 0\} \) be a strict sense stationary stochastic process. Let \(A \) be a positive random variable independent of the stochastic process \(\{X(t), t \geq 0\} \). Define
 \[Y(t) = AX(t) \]
 Then, which of the following is TRUE?
 (a) \(\{Y(t), t \geq 0\} \) is always a strict sense stationary process.
 (b) \(\{Y(t), t \geq 0\} \) is never a strict sense stationary process.
 (c) \(\{Y(t), t \geq 0\} \) may or may not be a strict sense stationary process.
 (d) \(\{Y(t), t \geq 0\} \) is not even a stochastic process.
6. In a communication system, the carrier signal at the receiver is modeled by \(Y(t) = X(t) \cos(2\pi wt + \Theta) \) where \(\{X(t), t \geq 0\} \) is a zero-mean and wide-sense stationary process, \(\Theta \) is a uniform distributed random variable with interval \((-\pi, \pi)\) and \(w \) is a positive constant. Assume that, \(\Theta \) is independent of the process \(\{X(t), t \geq 0\} \). Then, which of the following is not TRUE?

(a) mean function of \(\{Y(t), t \geq 0\} \) is independent of \(t \).
(b) \(E(Y(t)^2) \) is finite.
(c) covariance function of \(\{Y(t), t \geq 0\} \) is \(0.5 \cos(2\pi \omega(t - s)) \text{Cov}(X(t), X(s)) \)
(d) \(\{Y(t), t \geq 0\} \) is not a wide-sense stationary process.

7. Let \(\{X(t), t \geq 0\} \) be a stochastic process with independent increments. Then, which of the following is always TRUE?

(a) \(\{X(t), t \geq 0\} \) is a Markov process.
(b) \(\{X(t), t \geq 0\} \) need not be a Markov process.
(c) \(\{X(t), t \geq 0\} \) is a wide-sense stationary stochastic process.
(d) \(\{X(t), t \geq 0\} \) is a strict-sense stationary process.

8. Let \(\{N(t), t \geq 0\} \) be a Poisson process with parameter \(\lambda \). Then, which of the following is not TRUE?

(a) \(\{N(t), t \geq 0\} \) is a Markov process.
(b) \(\{N(t), t \geq 0\} \) is a wide-sense stationary process.
(c) \(\{N(t), t \geq 0\} \) has independent increments.
(d) \(E(N(t)^2) < \infty \).

9. Let \(\{N(t), t \geq 0\} \) be a Poisson process with parameter \(\lambda \). Consider the process \(\{X(t), t \geq 0\} \) where

\[
X(t) = N(t + L) - N(t)
\]

where \(L \) is a positive constant. Then,

(a) \(E(X(t)) = 0 \)
(b) \(\text{Cov}(X(t), X(s)) \) is not a function of \(|t - s| \)
(c) \(E(X(t)^2) = \sigma^2 \)
(d) \(\{X(t), t \geq 0\} \) is a wide-sense stationary process.

10. The first generation of particles is the collection of offsprings of a given particle. The next generation is formed by the offsprings of these members. If the probability that a particle has \(k \) offsprings is \(p_k \), where \(p_0 = \frac{1}{5}, p_1 = \frac{3}{5} \) and \(p_2 = \frac{1}{5} \). Assume that particles act independently and identically irrespectively of the generation. The probability of extinction equals

(A) \(\frac{1}{5} \) \(\frac{3}{5} \) \(\frac{2}{5} \) \(\frac{1}{5} \) \(D \) 1

11. The first generation of particles is the collection of offsprings of a given particle. The next generation is formed by the offsprings of these members. If the probability that a particle has \(k \) offsprings is \(p_k \), where \(p_0 = 0.5, p_1 = 0.2, p_2 = 0.3 \). Assume that particles act independently and identically irrespectively of the generation. The probability that there is at least one particle in first generation equals

(A) 0.5 \(\frac{1}{4} \) \(\frac{3}{4} \) \(\frac{1}{4} \) \(D \) 1

2