Measure Theory: Week 3 Assignment

Deadline: Wednesday, August 22, 2018, 11.59 PM

Q.1. [4 marks]

Let $F : \mathbb{R} \to \mathbb{R}$ be a monotonically increasing and right continuous function. Let $\tilde{\mathcal{I}}$ be the class of all left-open right-closed intervals in \mathbb{R} . Define $\mu_F : \tilde{\mathcal{I}} \to [0, \infty]$ by

$$\mu_F(a,b] = F(b) - F(a)$$

$$\mu_F(-\infty,b] = \lim_{x \to \infty} (F(b) - F(-x))$$

$$\mu_F(a,\infty) = \lim_{x \to \infty} (F(x) - F(a))$$

$$\mu_F(-\infty,\infty) = \lim_{x \to \infty} (F(x) - F(-x))$$

Then prove that μ_F is countably additive.

Q.2. [3 marks]

Let $F(x) = [x] = \max\{n \in \mathbb{Z} \mid n \leq x\}$, for $x \in \mathbb{R}$, that is, F(x) is the integral part of x. Describe the set function μ_F .

Hint. Observe and assume that F is monotonically increasing and right continuous.

Q.3. [3 marks]

Let F be a distribution function and $\alpha \in \mathbb{R}$. Show that $G = F + \alpha$ is also a distribution function and $\mu_G = \mu_F$.

Note. Check the Announcement page on the course portal for details on submitting the assignment solutions.