Assessment 7

1. The Dirac function in the context of a field in \mathbb{R}^d space is defined by:
 \[\delta(x) = \frac{1}{(2\pi)^{d/2}} \int e^{-\frac{x^2}{2}} \, dx. \]

2. A free field in \mathbb{R}^d space is defined by the action $\int \phi(x) \frac{1}{2} \nabla^2 \phi(x) \, dx$. The expression for normalization is:
 \[\sqrt{\frac{d}{2\pi}} \int e^{\frac{-x^2}{2}} \, dx. \]
 Note of the above
 By the power of moment
 Correct Answer:
 \[\sqrt{\frac{d}{2\pi}} \int e^{\frac{-x^2}{2}} \, dx. \]

3. A free field in \mathbb{R}^d space is defined by the action $\int \phi(x) \frac{1}{2} \nabla^2 \phi(x) \, dx$. The expression for generating functional for the full Green's function $G_{\phi}(x)$ is:
 \[\sqrt{\frac{d}{2\pi}} \int e^{\frac{-x^2}{2}} \, dx. \]
 Note of the above
 By the power of moment
 Correct Answer:
 \[\sqrt{\frac{d}{2\pi}} \int e^{\frac{-x^2}{2}} \, dx. \]

4. A free field in \mathbb{R}^d space is defined by the action $\int \phi(x) \frac{1}{2} \nabla^2 \phi(x) \, dx$. The expression for the field function $\phi(x)$ is:
 \[\sqrt{\frac{d}{2\pi}} \int e^{\frac{-x^2}{2}} \, dx. \]
 Note of the above
 By the power of moment
 Correct Answer:
 \[\sqrt{\frac{d}{2\pi}} \int e^{\frac{-x^2}{2}} \, dx. \]

5. Which of the following is a candidate for the action integral S of an interacting field defined in d-dimensional spacetime:
 \[S_{\phi} = \frac{1}{2} \int \left[\frac{\partial \phi(x)}{\partial x_\mu} \frac{\partial \phi(x)}{\partial x_\nu} - \frac{\partial^2 \phi(x)}{\partial x_\mu \partial x_\nu} \right] \, dx. \]
 Note of the above
 By the power of moment
 Correct Answer:
 \[S_{\phi} = \frac{1}{2} \int \left[\frac{\partial \phi(x)}{\partial x_\mu} \frac{\partial \phi(x)}{\partial x_\nu} - \frac{\partial^2 \phi(x)}{\partial x_\mu \partial x_\nu} \right] \, dx. \]

6. The Dirac function in the context of a field in \mathbb{R}^d space is defined by:
 \[\delta(x) = \frac{1}{(2\pi)^{d/2}} \int e^{-\frac{x^2}{2}} \, dx. \]
 Note of the above
 By the power of moment
 Correct Answer:

7. Consider ϕ theory in \mathbb{R}^d space with the action $S = \int \frac{1}{2} \nabla^2 \phi$ + $\frac{1}{2} \phi M \phi$. The propagator $\langle \phi(x) \phi(x') \rangle$ is given by:
 \[\langle \phi(x) \phi(x') \rangle = \frac{1}{(2\pi)^{d/2}} \int e^{-\frac{(x-x')^2}{2}} \, dx. \]
 Note of the above
 By the power of moment
 Correct Answer:
 \[\langle \phi(x) \phi(x') \rangle = \frac{1}{(2\pi)^{d/2}} \int e^{-\frac{(x-x')^2}{2}} \, dx. \]