Assessment 4

Due on 2020-10-14, 23:59 IST.

1. You are given the following Lagrange type stochastic differential equation:
 \[\text{d}x(t) = \alpha(t) \text{d}t + \beta(t) \text{d}W(t) \]
 \[\text{d}y(t) = \gamma(t) \text{d}t + \delta(t) \text{d}W(t) \]
 The corresponding Fokker-Planck equation for the probability density \(f(x,y,t) \) will take the form:
 \[\frac{\partial f(x,y,t)}{\partial t} = \ldots \]
 - None of the above
 - the power is incorrect

2. Given that \(\hat{a}^\dagger \hat{a} = 1 \) and \(\hat{a}^\dagger \hat{a} = 0 \), which of the following holds?
 \[\hat{a} \hat{a}^\dagger = \hat{a}^\dagger \hat{a} \]
 - \(\hat{a} \hat{a}^\dagger = \hat{a}^\dagger \hat{a} \)
 - \(\hat{a} \hat{a}^\dagger = \hat{a}^\dagger \hat{a} = 0 \)
 - None of the above
 - the power is incorrect

3. \[\int \text{d}x \int \text{d}y \] where the integration is over a complete set of \(x \) states equals:
 - The identity operator
 - \(\ldots \)
 - None of the above
 - the power is incorrect

4. The expression \([\hat{a}, \hat{a}^\dagger] \) represents:
 - The probability of a quantum system in state \(|\psi\rangle \) to move to state \(|\phi\rangle \)
 - The transition amplitude of a quantum system in state \(|\psi\rangle \) to move to state \(|\phi\rangle \)
 - The transition probability of a quantum system in state \(|\psi\rangle \) to move to state \(|\phi\rangle \)
 - None of the above
 - the power is incorrect

5. The Lagrangian of a particle moving in a potential \(V(x) \) is given by:
 \[\{ \text{Lagrangian} \} \]
 - None of the above
 - the power is incorrect

6. You are given that \(\{ q^a \} \) is an eigenstate of the momentum operator \(\hat{p} \) for a single non-relativistic free particle with the Hamiltonian \(\hat{H} = \hat{p}^2/2m \). The expression \(\{ q^a \}, \{ q^a \} \) evaluates to (Use the inner product \(\langle q^a | q^b \rangle = \delta_{ab} \))
 - \(\langle q^a | q^b \rangle = \delta_{ab} \)
 - \(\frac{L}{2m} \) \(\hat{p} \hat{p} \)
 - None of the above
 - the power is incorrect

7. \[\int_{-\infty}^{\infty} \text{d}x \text{e}^{-x^2} \] evaluates to:
 - \(\ldots \)
 - None of the above
 - the power is incorrect

8. The Lagrangian of a harmonic oscillator is \(\frac{1}{2} m \dot{x}^2 + \frac{1}{2} k x^2 \). The corresponding Euler-Lagrange equation is:
 - \(m \ddot{x} + k x = 0 \)
 - \(m \ddot{y} + k y = 0 \)
 - None of the above
 - the power is incorrect

9. \[\int \text{d}x \text{d}y \left(\delta(x - y) \right) \] is equal to:
 - \(\ldots \)
 - None of the above
 - the power is incorrect

10. The probability density function of a Gaussian distribution \(\phi(\sigma = \frac{1}{\sqrt{2\pi} \sigma}) \) is:
 - \(\phi(\sigma = \frac{1}{\sqrt{2\pi} \sigma}) \)
 - \(\phi(\sigma = \frac{1}{\sqrt{2\pi} \sigma}) \)
 - None of the above
 - the power is incorrect

11. The characteristic function is:
 - \(\ldots \)
 - None of the above
 - the power is incorrect

12. \(\ldots \)