Assignment 4

The due date for submitting this assignment has passed. **Due on 2017-08-28, 23:55 IST**
As per our records you have not submitted this assignment.

1) Cluster analysis can be employed to:
 - examine a firm's product offerings relative to competition.
 - group cities into homogeneous clusters for test marketing.
 - identify buyer groups sharing similar choice criteria.
 - segment markets
 - all of the above.

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 all of the above.

2) Which among the following techniques can be used to aid decision making when those decisions depend upon some available data?
 - descriptive statistics
 - inferential statistics
 - predictive analytics
 - prescriptive analytics

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 descriptive statistics
 inferential statistics
 predictive analytics
 prescriptive analytics

3) You are given input data ((x,y) pairs where x and y are scalars). But you suspect that the output depends on the square of the input as well. Which of the following technique would help you to do better learning?
 - shuffling the data
 - basis expansion
 - subset selection
 - normalization of the data

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 basis expansion
4) Adding interaction terms (such as products of two dimensions) in linear regression could lead to:

○ Increases the bias.
○ Increases the variance.
○ Leads to lower training error.
○ both (a) & (b)
○ both (b) & (c)

No, the answer is incorrect.
Score: 0

Accepted Answers:
both (b) & (c)

5) In a classification algorithm, consider the following two steps. In the first step, it is assumed that the input space is divided into axis-parallel rectangles, with a constraint that every rectangle must have at least one data point. In second step, one random data point from each rectangle is sampled and label of that data point is assigned to the entire region of that rectangle. Both the steps are introducing some kind of bias. Find the correct matching for the step and bias introduced by it.

○ first: search
○ second: language

No, the answer is incorrect.
Score: 0

Accepted Answers:
first: language
second: search

6) Which of the following statements is true about step-wise estimation?

○ a method of selecting variables for inclusion in the regression model that starts by selecting the worst variable
○ a method of selecting variables where independent variables are selected in terms of the incremental explanatory power they can add to the regression model
○ independent variables are added as long as their bi-variate correlation coefficients are statistically significant
○ all of the above
○ none of the above

No, the answer is incorrect.
Score: 0

Accepted Answers:
a method of selecting variables where independent variables are selected in terms of the incremental explanatory power they can add to the regression model

7) A residual represents which of the following?

○ the difference between the actual Y value and the predicted Y value for a given value of X.
○ the difference between the actual X value and the predicted X value for a given value of Y
○ the difference between the actual Y value and the mean of Y for a given value of X
○ the predicted value of Y for the average X value.

No, the answer is incorrect.
Score: 0

Accepted Answers:
the difference between the actual Y value and the predicted Y value for a given value of X.
8) Suppose we trained a supervised learning algorithm on some training data and observed that the resultant model gave no error on the training data. Which among the following conclusions can you draw in this scenario?

- the learned model has overfit the data
- it is possible that the learned model will generalise well to unseen data
- it is possible that the learned model will not generalise well to unseen data
- the learned model will definitely perform well on unseen data
- the learned model will definitely not perform well on unseen data

No, the answer is incorrect.

Score: 0

Accepted Answers:
- it is possible that the learned model will generalise well to unseen data
- it is possible that the learned model will not generalise well to unseen data

WEKA based questions
The following questions are based on using WEKA. Go through the tutorial on WEKA before attempting these questions.

9) Suppose you are given a task of predicting the temperature by using the cricket chirps. In the following table, column X denotes the level of cricket chirp and Y denotes the corresponding temperature. You decide to learn a linear regression model with the given data. What are the values of \(b_0\) and \(b_1\) you will get for the form \(y = b_0 + b_1 x\)?

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>88.59999847</td>
</tr>
<tr>
<td>16</td>
<td>71.59999847</td>
</tr>
<tr>
<td>19.79999924</td>
<td>93.30000305</td>
</tr>
<tr>
<td>18.39999962</td>
<td>84.30000305</td>
</tr>
<tr>
<td>17.10000038</td>
<td>80.59999847</td>
</tr>
<tr>
<td>15.5</td>
<td>75.19999695</td>
</tr>
<tr>
<td>14.69999981</td>
<td>69.69999695</td>
</tr>
<tr>
<td>17.10000038</td>
<td>82</td>
</tr>
<tr>
<td>15.39999962</td>
<td>69.40000153</td>
</tr>
<tr>
<td>16.20000076</td>
<td>83.30000305</td>
</tr>
<tr>
<td>15</td>
<td>79.59999847</td>
</tr>
<tr>
<td>17.20000076</td>
<td>82.59999847</td>
</tr>
<tr>
<td>16</td>
<td>80.59999847</td>
</tr>
<tr>
<td>17</td>
<td>83.5</td>
</tr>
<tr>
<td>14.39999962</td>
<td>76.30000305</td>
</tr>
</tbody>
</table>

- \(b_0 = 0.6b_1 = 4.47\)
- \(b_0 = 17.82b_1 = 3.511\)
- \(b_0 = 5.332b_1 = 4.013\)
- \(b_0 = 25.23b_1 = 3.291\)

No, the answer is incorrect.

Score: 0

Accepted Answers:
Body fat in a human body is a function of (triceps skin-fold thickness, thigh circumference and midarm circumference). Consider the data given in following table. The first three columns are the independent variables and fourth column is the dependent variable. Your task is to perform multiple linear regression model (minimize the mean square error) on the data and find the correct coefficients from the following choices. (coefficients in the options are given in the order: intercept, triceps skin-fold thickness, thigh circumference, midarm circumference)

\[b_0 = 25.23b_1 = 3.291 \]

Dataset 1

This data set contains 100 data points. The input is 3-dimensional \((x_1, x_2, x_3)\) with one output variable \(y\). This data is in the csv format which can directly be used in Weka.

Task: You need to fit linear regression model on Dataset 1 and answer the following questions.

- \(b_0 = 25.23, b_1 = 3.291 \)
- \(b_0 = 21.8, 9.21, 8.5, 4.53 \)
- \(b_0 = 73.4, -8.19, 3.26, 4.15 \)
- \(b_0 = -86.4, 55.3, -12.1, 3.1 \)
- \(b_0 = 117.1, 4.33, -2.86, -2.19 \)

No, the answer is incorrect.

Score: 0

Accepted Answers:

- \(117.1, 4.33, -2.86, -2.19 \)
11) What is the best linear fit for data set 1?

- 0.0049 * x1 + 57.4552 * x2 + 79.0601 * x3 + 0.00301
- 0.00301 * x1 + 79.0601 * x2 + 57.4552 * x3 + 0.0049
- 23.2301 * x1 + 0.7310 * x2 + 48.3749 * x3 - 52.5001
- 52.5001 * x1 + 48.3749 * x2 + 0.7310 * x3 + 23.2301

No, the answer is incorrect.
Score: 0
Accepted Answers:
- 0.00301 * x1 + 79.0601 * x2 + 57.4552 * x3 + 0.0049

12) As explained in the lecture, not all the features are equally important. For dataset 1, if we rank the features in the order of importance, which of the following rank is true?

[Note: options are given in descending order of the importance. x1, x2, x3 means x1 is the most important and x3 is the least important]

- x2, x1, x3
- x3, x2, x1
- x2, x3, x1
- x3, x1, x2
- x1, x2, x3
- x1, x3, x2

No, the answer is incorrect.
Score: 0
Accepted Answers:
- x2, x3, x1