Announcements

NPTEL » Six Sigma

Course outline

course work?

Week 0

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Lecture 43 : Factorial Design:

Minitab Application

O Lecture 44 : Fractional

Application

Key Concepts

Factorial Design: Minitab

Lecture 45 : Taguchi Method:

Illustrative Application

Ouiz: Assignment 9

Week 9 Feedback Form

DOWNLOAD VIDEOS

Text Transcripts

Assignment Detailed Solution

Week 10

Week 11

Week 12

How does an NPTEL online

a. 9 b. 81 c. 125 d. 27 ○ a. ○ b.

a. 21

b. 5

c. 32

d. 10

Match the following

Type of Variation

A. The sparsity of

B. The projection

property

C. Sequential

effects principle

experimentation

a. A-3, B-1, C-2

b. A-3, B-2, C-1

c. A-2, B-3, C-1

d. A-2, B-1, C-3

alias structure of A (assume I=ABC).

a. AB

b. BC

c. AC

d. ABC

alias structure of AB (assume I=ABC).

ABC

b. C

c. B

d. AC

○ a.

○ b.

О c.

d.

4)

○ a.

○ b.

O c.

○ a.

○ b.

Ос.

d.

○ a.

○ b.

○ c.

 \bigcirc d.

Score: 0

○ a.

○ b.

O c.

d.

Score: 0

○ a.

○ b.

О c.

d.

9)

○ a.

○ b.

О c.

 \bigcirc d.

○ a.

○ b.

О c.

○ d.

Score: 0

11)

○ a.

○ b.

○ c.

○ d.

Score: 0

○ a.

○ b.

Score: 0

○ a.

○ b.

○ c.

 \bigcirc d.

Score: 0

○ a.

○ b.

○ c.

○ d.

Score: 0

○ a.

○ b.

O c.

 \bigcirc d.

Score: 0

a.

No, the answer is incorrect.

Accepted Answers:

No, the answer is incorrect.

Accepted Answers:

No, the answer is incorrect.

Accepted Answers:

No, the answer is incorrect.

No, the answer is incorrect.

Accepted Answers:

Accepted Answers:

No, the answer is incorrect.

Concept

Match the following

A. Larger is better

B. Smaller is better

C. Nominal is best

a. A-3, B-2, C-1

b. A-3, B-1, C-2

c. A-2, B-3, C-1

d. A-2, B-1, C-3

a. Non-random errors

b. Random errors

Design phase

Hint: use nominal is best concept

a. Rs. 500

b. Rs. 625

c. Rs. 100

d. Rs. 937.50

Signal-to-Noise ratio for "larger is better" is-

a. $SN_l = -10\log\left(\frac{1}{n}\sum_{i=1}^n \frac{1}{y_i^2}\right)$

b. $SN_l = -10\log\left(\frac{1}{n}\sum_{i=1}^n y_i^2\right)$

c. $SN_l = 10\log\left(\frac{\overline{y}^2}{S^2}\right)$

d. None of these

b. Service delivery phase

c. Post service delivery phase

Design to the highest standards early in the process eliminates-

You can save more for your organization if you correct the production process at

d. All the phases consume equal amount of resources

A Company received an average of 10 complaints per month last year. In November they

received 15 complaints (y). Management sets an acceptable level at 2 (tolerance). If it costs the

company Rs.25.00 directly per complaint to correct the problems and the cost in lost sales is

Rs.75.00 per complaint. Compute the total cost of quality in the month of November

Accepted Answers:

No, the answer is incorrect.

Accepted Answers:

No, the answer is incorrect.

Accepted Answers:

No, the answer is incorrect.

theory is the statement by

a. Edwards Deming

c. Genichi Taguchi

a. Environmental variables

c. Manufacturing variations

b. Product deterioration

According to Taguchi, the complexity is maximum at

Hint: Here y is output value and m is the target of the process specification

1. $L(y) = k(y-m)^2$

The loss function

 $2. \quad L(y) = ky^2$

 $3. \quad L(y) = k \left| \frac{1}{v^2} \right|$

a. Tolerance design

c. Parameter design

b. System design

d. All of these

d. All of these

b. Joseph Juran

d. None of these

Accepted Answers:

No, the answer is incorrect.

In resolution IV designs

d. None of these

Accepted Answers:

No, the answer is incorrect.

Accepted Answers:

d.

No, the answer is incorrect.

Accepted Answers:

No, the answer is incorrect.

Accepted Answers:

The due date for submitting this assignment has passed. (Hint: Assume complete factorial experiment)

About the Course

Ask a Question Progress Mentor

Unit 11 - Week 9

Assignment 9

As per our records you have not submitted this assignment.

Due on 2020-04-01, 23:59 IST.

1 point

How many runs per replication are possible in an experiment with four factors and three levels?

O c. \bigcirc d. No, the answer is incorrect.

Score: 0 Accepted Answers:

b.

In a 2⁵ design, how many three factor interactions are possible

63 6

10 d. 32

○ a. ○ b. O c.

○ d.

No, the answer is incorrect.

Lecture 46 : Taguchi Method:

Accepted Answers:

In a 2^7 design how many degrees of freedom correspond to two-factor interaction

Definition

interactions.

subset of significant factors.

Consider an experiment with three factors A, B, C with two levels ("+" and "-"). Identify the

Consider an experiment with three factors A, B, C with two levels ("+" and "-"). Identify the

a. Two-factor interactions are aliased with three-factor interactions

Theory can be proved by the experiments; but no path leads from experiment to the birth of a

In product design phase, we can take the countermeasure against which of the source of noise

b. Two-factor interactions are aliased with each other

c. Main effects are aliased with two-factor interactions

1. It is possible to combine the runs of two (or more) fractional

factor effects and interactions of interest.

factorials to construct sequentially a larger design to estimate the

2. When there are several variables, the system or process is likely to

3. Fractional factorial designs can be projected into stronger designs in

be driven primarily by some of the main effects or low-order