Assignment 1

The due date for submitting this assignment has passed.

As per our records, you have not submitted this assignment.

Due on 2019-09-14, 23:59 IST.

1. Linear programming techniques that help in making decisions are:
 - Resource allocation
 - Resource optimization
 - Resource constraints
 - All of the above
 - Not the answer to question
 - Accepted Answer: Resource allocation

2. Which of the following is NOT a linear programming property?
 - Relationships are nonlinear
 - Constraints that the decision in which the objective can be obtained
 - There must be alternatives available
 - Problem seek to maximize or minimize an objective
 - Not the answer to question
 - Accepted Answer: Relationships are nonlinear

3. Which of the following is NOT an assumption of linear programming?
 - Number of objective and control variables is known with certainty
 - Proprietary by states in objective and constraints
 - The total number of activities is equal to the sum of individual activities
 - Divisibility is not possible which implies that solutions cannot be fractional
 - Not the answer to question
 - Accepted Answer: Proprietary by states in objective and constraints

4. In/utility theory property of non-motion linear:
 - Between two certain investments we always take the one with the largest outcomes
 - Utility maximization cannot be satisfactorily
 - $U(w_1, w_2) = 0$ when w_2 is utility for wealth w_1
 - All variables are non-negative because quantity of physical good or person etc., may not be negative
 - Not the answer to question
 - Accepted Answer: Between two certain investments we always take the one with the largest outcomes

5. Considering $U(W)$ utility for wealth W of the following is true?
 - $(U(W) + U(W)) = 0$ risk aversion
 - $(U(W) + U(W)) = 0$ risk neutral
 - $(U(W) + U(W)) = 0$ risk seeker
 - Accepted Answer: $(U(W) + U(W)) = 0$ risk seeker

6. Which of the following defines marginal utility function?
 - Marginal utility function looks like a concave function & risk adverse
 - Marginal utility function looks like a linear function & risk neutral
 - Marginal utility function looks like a convex function & risk seeker
 - Accepted Answer: Marginal utility function looks like a convex function & risk seeker

7. Which of the following specifies correct risk behavior of an investor?
 - Marginal utility rate is decreasing at a decreasing rate & risk aversion
 - Marginal utility rate is increasing at a decreasing rate & risk neutral
 - Marginal utility rate is increasing at a constant rate & risk seeker
 - Not the answer to question
 - Accepted Answer: Marginal utility rate is increasing at a constant rate & risk seeker

8. Which of the following is true for Absolute Risk Aversion Property ARA?
 - Decreasing absolute risk aversion $A(R/x) = A(R/x) + A(R/x)
 - Constant absolute risk aversion $A(x) = A(x) = A(x) = A(x)$
 - Increasing absolute risk aversion $A(x) = A(x) = A(x) = A(x)$
 - Not the following
 - Accepted Answer: Decreasing absolute risk aversion $A(R/x) = A(R/x) + A(R/x)$

9. Which of the following is NOT true for Relative Risk Aversion Property RRA?
 - Decreasing relative risk aversion $P(R-x) = P(R-x) + P(R-x)
 - Constant relative risk aversion $P(R) = P(R) = P(R) = P(R)$
 - Increasing relative risk aversion $P(R-x) = P(R-x) = P(R-x) = P(R-x)$
 - Not the following
 - Accepted Answer: Decreasing relative risk aversion $P(R-x) = P(R-x) + P(R-x)$