Assignment 06

The due date for submitting this assignment has passed.

As an alternative, you can submit this assignment.

1. Consider the following SISO model:

 The model represents a system operating in steady-state with a second order accumulator. The system dynamics are described by a transfer function determined by the plant's characteristics.

 The initial system state with initial condition (initial state of the plant) is as follows: A(0) = 1, B(0) = 2, C(0) = 3, D(0) = 4.

 The system is subjected to an input signal (input to the system) that consists of a step change of 5 units at time t = 0.

 An analysis of the system's response using the Laplace Transform approach reveals that:

 a) The system's output response is:

 b) The steady-state error is:

 c) The transient response is:

 d) The system's stability can be determined by:

 e) The system's frequency response is:

 f) The system's time response is:

 g) The system's poles are:

 h) The system's zeros are:

 i) The system's gain is:

 j) The system's phase is:

 k) The system's steady-state error is:

 l) The system's transient response is:

 m) The system's poles are:

 n) The system's zeros are:

 o) The system's gain is:

 p) The system's phase is:

 q) The system's steady-state error is:

 r) The system's transient response is:

 s) The system's poles are:

 t) The system's zeros are:

 u) The system's gain is:

 v) The system's phase is:

 w) The system's steady-state error is:

 x) The system's transient response is:

 y) The system's poles are:

 z) The system's zeros are:

 aa) The system's gain is:

 bb) The system's phase is:

 cc) The system's steady-state error is:

 dd) The system's transient response is:

 ee) The system's poles are:

 ff) The system's zeros are:

 gg) The system's gain is:

 hh) The system's phase is:

 ii) The system's steady-state error is:

 jj) The system's transient response is:

 kk) The system's poles are:

 ll) The system's zeros are:

 mm) The system's gain is:

 nn) The system's phase is:

 oo) The system's steady-state error is:

 pp) The system's transient response is:

 qq) The system's poles are:

 rr) The system's zeros are:

 ss) The system's gain is:

 tt) The system's phase is:

 uu) The system's steady-state error is:

 vv) The system's transient response is:

 ww) The system's poles are:

 xx) The system's zeros are:

 yy) The system's gain is:

 zz) The system's phase is:

 aa) The system's steady-state error is:

 bb) The system's transient response is:

 cc) The system's poles are:

 dd) The system's zeros are:

 ee) The system's gain is:

 ff) The system's phase is:

 gg) The system's steady-state error is:

 hh) The system's transient response is:

 ii) The system's poles are:

 jj) The system's zeros are:

 kk) The system's gain is:

 ll) The system's phase is:

 mm) The system's steady-state error is:

 nn) The system's transient response is:

 oo) The system's poles are:

 pp) The system's zeros are:

 qq) The system's gain is:

 rr) The system's phase is:

 ss) The system's steady-state error is:

 tt) The system's transient response is:

 uu) The system's poles are:

 vv) The system's zeros are:

 ww) The system's gain is:

 xx) The system's phase is:

 yy) The system's steady-state error is:

 zz) The system's transient response is:

 aa) The system's poles are:

 bb) The system's zeros are:

 cc) The system's gain is:

 dd) The system's phase is:

 ee) The system's steady-state error is:

 ff) The system's transient response is:

 gg) The system's poles are:

 hh) The system's zeros are:

 ii) The system's gain is:

 jj) The system's phase is:

 kk) The system's steady-state error is:

 ll) The system's transient response is:

 mm) The system's poles are:

 nn) The system's zeros are:

 oo) The system's gain is:

 pp) The system's phase is:

 qq) The system's steady-state error is:

 rr) The system's transient response is:

 ss) The system's poles are:

 tt) The system's zeros are:

 uu) The system's gain is:

 vv) The system's phase is:

 ww) The system's steady-state error is:

 xx) The system's transient response is:

 yy) The system's poles are:

 zz) The system's zeros are:

 aa) The system's gain is:

 bb) The system's phase is:

 cc) The system's steady-state error is:

 dd) The system's transient response is:

 ee) The system's poles are:

 ff) The system's zeros are:

 gg) The system's gain is:

 hh) The system's phase is:

 ii) The system's steady-state error is:

 jj) The system's transient response is:

 kk) The system's poles are:

 ll) The system's zeros are:

 mm) The system's gain is:

 nn) The system's phase is:

 oo) The system's steady-state error is:

 pp) The system's transient response is:

 qq) The system's poles are:

 rr) The system's zeros are:

 ss) The system's gain is:

 tt) The system's phase is:

 uu) The system's steady-state error is:

 vv) The system's transient response is:

 ww) The system's poles are:

 xx) The system's zeros are:

 yy) The system's gain is:

 zz) The system's phase is:

 aa) The system's steady-state error is:

 bb) The system's transient response is:

 cc) The system's poles are:

 dd) The system's zeros are:

 ee) The system's gain is:

 ff) The system's phase is:

 gg) The system's steady-state error is:

 hh) The system's transient response is:

 ii) The system's poles are:

 jj) The system's zeros are:

 kk) The system's gain is:

 ll) The system's phase is: