Assignment-4

1. The discount process is defined by $D(t) = e^{-\int_0^t R(s)\,ds}$. Then $\frac{d}{dt}D(t) =$?

 (a) $-e^{-\int_0^t R(s)\,ds}$
 (b) $-e^{-\int_0^1 R(s)\,ds}$
 (c) $-R(t)e^{-\int_0^t R(s)\,ds}$
 (d) None of these

2. Suppose $W(t)$ is a Brownian motion ($t \in [0, T]$). Then for $t \in [0, T]$ $Y = \frac{W(T) - W(t)}{\sqrt{T - t}}$ follows:

 (a) $N(0, \sqrt{T - t})$
 (b) $N(t, \sqrt{T - t})$
 (c) $N(0, 1)$
 (d) $N(0, T - t)$

3. Every martingale can be represented as an Ito-Integral.

 (a) True
 (b) False

4. Suppose at time $t = 0$ you invest S_0 amount in risk asset. At time $t = 1$ you possibly receive either amount $S_1 = uS_0$ or amount $S_1 = dS_0$ where $u > d$. Suppose r is fixed interest rate, then what is risk neutral probability \tilde{q} of obtaining amount dS_0?

 (a) $(u - 1 - r)/(u - d)$
 (b) $(u + 1 - r)/(u + d)$
 (c) $(u + 1 + r)/(u + d)$
 (d) $(1 + r - d)/(u - d)$

5. In a market, stock prices never follows geometric Brownian motion.

 (a) True
 (b) False
6. Suppose at time \(t = 0 \) you invest \(S_0 \) amount in risk asset. At time \(t = 1 \) you possibly receive either amount \(S_1 = uS_0 \) or amount \(S_1 = dS_0 \) where \(u > d \). Suppose \(r \) is fixed interest rate, then no arbitrage condition is?

(a) \(0 < d < 1 + r < u \)
(b) \(0 < 1 + r < d < u \)
(c) \(0 < d < u < 1 + r \)
(d) None of these

7. Suppose at time \(t = 0 \) you invest \(S_0 \) amount in a market. At time \(t = 1 \) you receive amount \(S_1 \). If \(K \) is strike price then value of option at \(t = 1 \) is given by

(a) \(\min\{S_1 - K, 0\} \)
(b) \(\max\{S_1 - K, 0\} \)
(c) \(\min\{S_0 - K, 0\} \)
(d) \(\max\{S_0 - K, 0\} \)

8. Suppose at time \(t = 0 \) you invest \(S_0 \) amount in risk asset. At time \(t = 1 \) you possibly receive either amount \(S_1 = uS_0 \) or amount \(S_1 = dS_0 \) where \(u > d \). Suppose \(r \) is fixed interest rate, then what is risk neutral probability \(\tilde{p} \) of obtaining amount \(uS_0 \)?

(a) \(\frac{1 - r - d}{u - d} \)
(b) \(\frac{1 - r - d}{u + d} \)
(c) \(\frac{1 + r + d}{u + d} \)
(d) \(\frac{1 + r - d}{u - d} \)

9. Under risk neutral probabilities, the discounted stock price is a Martingale.

(a) True
(b) False

10. The measure of ups and downs in the stock prices is stock volatility.

(a) True
(b) False

Answers

1. c
2. c
3. a
4. b
5. a
6. a
7. b
8. d
9. a
10. a