Weekly Assignment 9

The due date for submitting this assignment has passed.
As per our records you have not submitted this assignment.

Due on 2020-11-18, 23:59 IST.

These questions are based on the Week-9 video lectures. Please use discussion forum in case you have any doubt.

For Q2-4A, you can assume that the empty sequence (ØN) is valid codeword.

1) Given a prefix-free code which assigns codeword of length i, to symbol $i \in [n]$, which of these always hold? (log stands for log base 2.)
 - $\sum_{i=1}^{n} \log i \geq 0$
 - $\sum_{i=1}^{n} \log i \leq 0$
 - $2^n \leq 1$
 - $2^n > 2^{n^2} + 2^n \leq 1$
 - No, the answer is incorrect.
 - Score: 0
 - Accepted Answers:
 - $2^n \leq 1$
 - $2^n > 2^{n^2} + 2^n \leq 1$

2) Consider a source X with pmf
 $P(0) = 1/3, P(1) = P(3) = 1/8, P(5) = P(4) = P(6) = 1/16$. What is the value of $I(X)$?
 - 0.14
 - 0.12
 - 2
 - No, the answer is incorrect.
 - Score: 0
 - Accepted Answers:
 - 0.14

3) Consider a source X with pmf
 $P(0) = 1/2, P(1) = P(3) = 1/8, P(5) = P(4) = P(6) = 1/16$. What is the value of $U'(X)$?
 - 0.34
 - 0.14
 - 2
 - No, the answer is incorrect.
 - Score: 0
 - Accepted Answers:
 - 0.34

4) Consider a source X with pmf
 $P(0) = 1/2, P(1) = P(2) = 1/8, P(5) = P(4) = P(6) = 1/16$. What is the value of $I_{8/24}(X)$?
 - 0.34
 - 0.14
 - 2
 - No, the answer is incorrect.
 - Score: 0
 - Accepted Answers:
 - 0.34

5) Consider a source X with pmf
 $P(0) = 1/3, P(2) = 1/6, P(3) = 1/6, P(4) = 1/3$. Which of the following is the Huffman code for this source?
 - $1 \rightarrow 001$
 - $2 \rightarrow 0110$
 - $3 \rightarrow 1001$
 - $4 \rightarrow 110$
 - $1 \rightarrow 110$
 - $2 \rightarrow 0110$
 - $3 \rightarrow 1001$
 - $4 \rightarrow 001$
 - $1 \rightarrow 110$
 - $2 \rightarrow 0110$
 - $3 \rightarrow 1001$
 - $4 \rightarrow 000$
 - No, the answer is incorrect.
 - Score: 0
 - Accepted Answers:
 - $1 \rightarrow 001$
 - $2 \rightarrow 0110$
 - $3 \rightarrow 1001$
 - $4 \rightarrow 110$
 - $1 \rightarrow 110$
 - $2 \rightarrow 0110$
 - $3 \rightarrow 1001$
 - $4 \rightarrow 001$