Weekly Assignment 10

Due date: 2020-11-23, 23:59 UTC

Page 11: Data Compression-2 (Unit 10) and Data Compression-3 (Unit 11)

1. Suppose that $p_r = (p_1, \ldots, p_n)$ is distributed on \mathbb{R}^n where $P_r = \text{Bern}(\theta)$, where $\mathbf{P}(\mathbf{X} | \mathbf{Y})$ denotes the number of terms in \mathbf{Y}. What is the expected value of $\mathbf{P}(\mathbf{X} | \mathbf{Y})$?

2. A random variable X is uniformly distributed on $[0, 1]$. What is the expected value of X^2?

3. Suppose X, Y, Z are independent random variables, each uniformly distributed on $[0, 1]$. What is the expected value of $X^2 + Y^2 + Z^2$?

4. Suppose X, Y are independent random variables, each uniformly distributed on $[0, 1]$. What is the expected value of $X^2 + Y^2$?

5. Let X and Y be independent random variables, each uniformly distributed on $[0, 1]$. What is the expected value of $X^2 + Y^2$?

6. Let X and Y be independent random variables, each uniformly distributed on $[0, 1]$. What is the expected value of $X^2 + Y^2$?

7. Let X and Y be independent random variables, each uniformly distributed on $[0, 1]$. What is the expected value of $X^2 + Y^2$?

8. Let X and Y be independent random variables, each uniformly distributed on $[0, 1]$. What is the expected value of $X^2 + Y^2$?

9. Let X and Y be independent random variables, each uniformly distributed on $[0, 1]$. What is the expected value of $X^2 + Y^2$?

10. Let X and Y be independent random variables, each uniformly distributed on $[0, 1]$. What is the expected value of $X^2 + Y^2$?

11. Let X and Y be independent random variables, each uniformly distributed on $[0, 1]$. What is the expected value of $X^2 + Y^2$?

12. Let X and Y be independent random variables, each uniformly distributed on $[0, 1]$. What is the expected value of $X^2 + Y^2$?

13. Let X and Y be independent random variables, each uniformly distributed on $[0, 1]$. What is the expected value of $X^2 + Y^2$?