Assignment 03
Due on 2023-08-31, 23:59 UTC

1. Consider a simple linear regression model $y = \beta_0 + \beta_1 x + \epsilon$. The values of β_0 and β_1 are estimated to be 2 and 0.5, respectively. If x increases by 1 unit, how much does y increase on average?

Answer: 0.5 units

2. What is the difference between logistic regression and linear regression models?

Answer: Logistic regression is used for binary classification problems, where the output is a probability between 0 and 1, while linear regression is used for predicting continuous outcomes.

3. Consider a multiple linear regression model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$. If x_1 increases by 1 unit, how much does y increase on average?

Answer: β_1 units

4. What is the difference between a binary and a multinomial logistic regression model?

Answer: Binary logistic regression models the probability of a binary outcome, while multinomial logistic regression models the probability of a categorical outcome with more than two categories.

5. Consider a multiple linear regression model with k predictors. How does the R^2 value change when a new predictor is added to the model?

Answer: R^2 may increase, decrease, or remain the same.

6. What is the main advantage of using logistic regression over linear regression for binary classification?

Answer: Logistic regression provides probabilities rather than making hard predictions, which can be more realistic for classification problems.

7. Consider a multiple linear regression model with k predictors. How does the R^2 value change when a new predictor is added to the model?

Answer: R^2 may increase, decrease, or remain the same.

8. What is the difference between a linear and a logistic regression model?

Answer: Linear regression models a linear relationship between the input and output variables, while logistic regression models a probability using a logistic function.

9. Consider a simple linear regression model $y = \beta_0 + \beta_1 x + \epsilon$. If x increases by 1 unit, how much does y increase on average?

Answer: β_1 units

10. What is the main advantage of using logistic regression over linear regression for binary classification?

Answer: Logistic regression provides probabilities rather than making hard predictions, which can be more realistic for classification problems.

11. Consider a simple linear regression model $y = \beta_0 + \beta_1 x + \epsilon$. If x increases by 1 unit, how much does y increase on average?

Answer: β_1 units

12. What is the main advantage of using logistic regression over linear regression for binary classification?

Answer: Logistic regression provides probabilities rather than making hard predictions, which can be more realistic for classification problems.

13. Consider a simple linear regression model $y = \beta_0 + \beta_1 x + \epsilon$. If x increases by 1 unit, how much does y increase on average?

Answer: β_1 units

14. What is the main advantage of using logistic regression over linear regression for binary classification?

Answer: Logistic regression provides probabilities rather than making hard predictions, which can be more realistic for classification problems.

15. Consider a simple linear regression model $y = \beta_0 + \beta_1 x + \epsilon$. If x increases by 1 unit, how much does y increase on average?

Answer: β_1 units

16. What is the main advantage of using logistic regression over linear regression for binary classification?

Answer: Logistic regression provides probabilities rather than making hard predictions, which can be more realistic for classification problems.

17. Consider a simple linear regression model $y = \beta_0 + \beta_1 x + \epsilon$. If x increases by 1 unit, how much does y increase on average?

Answer: β_1 units

18. What is the main advantage of using logistic regression over linear regression for binary classification?

Answer: Logistic regression provides probabilities rather than making hard predictions, which can be more realistic for classification problems.

19. Consider a simple linear regression model $y = \beta_0 + \beta_1 x + \epsilon$. If x increases by 1 unit, how much does y increase on average?

Answer: β_1 units

20. What is the main advantage of using logistic regression over linear regression for binary classification?

Answer: Logistic regression provides probabilities rather than making hard predictions, which can be more realistic for classification problems.