Assignment 09

The due date for submitting this assignment has passed. For your own records you have not submitted this assignment.

Instructions:
1. Submit all questions.
2. Include page number and question number.
4. You have 3 hours between 7am and 10am to submit this assignment.

1. Let \(f \) be an integral operator of \((\mathcal{D}, \mathcal{H}) \). Is it possible to express \(f \) as \(f(x) = \int \mathcal{D} f(x, y) g(y) \, dy \)?

 - True
 - False
 - 2 points

2. Let \(\mathcal{H} \) be a Reproducing Kernel Hilbert Space (RKHS) equipped with the following kernel function:
 \[
 K(x, y) = \begin{cases}
 1, & x = y \\
 0, & x \neq y
 \end{cases}
 \]

 a. Is \(\mathcal{H} \) a RKHS?
 - True
 - False
 - 2 points

 b. Is \(\mathcal{H} \) a Hilbert space?
 - True
 - False
 - 2 points

3. Let \(K \in \mathcal{R} \) be a positive definite kernel function. Is \(K \) a symmetric function?
 - True
 - False
 - 2 points

4. Let \(\mathcal{X} \) be a measurable space and \(\mathcal{S} \) be a measurable space. Is \(\mathcal{X} \times \mathcal{S} \) a measurable space?
 - True
 - False
 - 2 points

5. Let \(\mathcal{H} \) be a Reproducing Kernel Hilbert Space (RKHS). Is \(\mathcal{H} \) a Banach space?
 - True
 - False
 - 2 points

6. Let \(\mathcal{H} \) be a Reproducing Kernel Hilbert Space (RKHS) equipped with the following kernel function:
 \[
 K(x, y) = \begin{cases}
 1, & x = y \\
 0, & x \neq y
 \end{cases}
 \]

 a. Is \(\mathcal{H} \) a RKHS?
 - True
 - False
 - 2 points

 b. Is \(\mathcal{H} \) a Hilbert space?
 - True
 - False
 - 2 points

7. Let \(\mathcal{X} \) be a measurable space and \(\mathcal{Y} \) be another measurable space. Is \(\mathcal{X} \times \mathcal{Y} \) a measurable space?
 - True
 - False
 - 2 points

8. Let \(\mathcal{H} \) be a Reproducing Kernel Hilbert Space (RKHS). Is \(\mathcal{H} \) a Banach space?
 - True
 - False
 - 2 points