Introduction to Time-Varying Electrical Networks: Week 7

Problem 1

Fig. 1 shows an RC network with a periodically time-varying resistor. The capacitor \(C = 1 \, \text{F} \). The conductance varies from 0 to \(2\pi 1000 \, \text{S} \) as shown in the figure. Write a MATLAB program to determine the harmonic transfer functions of this network. Assume that \(g(t) \) has a rise- and fall-times of 0.1 s and an average value that is half its peak value. Denoting the maximum number of harmonics at any node by \(K \), so that there are \((2K + 1)\) sinusoids at any node, your code should be able to accommodate a user-specified \(K \). For uniformity, the range of the y-axis must be 0-1, and the x-axis from -3 to 3 Hz, with increments in \(f \) chosen to be 0.05. What do you notice as you change \(K \)? Run sanity checks for the values of the harmonic transfer functions at frequencies 1, 2, 3 Hz.

Suggestion: When you invert the \(G \) matrix in MATLAB to solve \(GV = I \), do not use \(V = \text{inv}(G) \times I \). Turns out that matrix inversion is a very computationally intensive process – remember that you are inverting a \(3000 \times 3000 \) matrix. Rather, use \(V = G \backslash I \), which is much quicker. Since I told you not to do something, I am sure you will definitely do it. See for yourself how much quicker the \(V = G \backslash I \) is with respect to explicitly computing the inverse.

Problem 5

Next, use the code you developed in the previous problem to compute \(H_{-k}(j2\pi k) \) for 1, 2. Use \(K = 512 \), and a frequency resolution of 0.01 Hz. Plot \(H_{-k}(j2\pi f) \) for 1, 2 for \(f \) between 0 and 3 Hz at intervals of every 0.01 Hz. What do you notice? For ease of computation, assume that the rise- and fall-times of \(s(t) \) are 1% of its period, and that the average of \(s(t) \) is 25% of its peak value.

Fig. 2 shows an RC network with a periodically-operated ideal switch. The switch is closed when \(s(t) \) is high and open when it is low. \(s(t) \) has a frequency of 1 Hz and a 25% duty cycle. The capacitor \(C = 1 \, \text{F} \). \(RC = 10 \, \text{s} \). The output is the voltage at the output of the capacitor \(v_c(t) \). Analytically determine \(H_{-k}(j2\pi k) \) for 1, 2 (use the fact that \(RC \gg T_s/4 \) to advantage).