Unit 4 - Week 2: Elements in series and parallel; Controlled sources

Assignment 2

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

Due on 2020-09-30, 23:59 IST.

1) Determine the current I_1 in the figure below.

![Figure 1](image1.png)

(The answer must be in **milliamperes (mA)**. Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) 1.4,1.6

2) Determine the current I_1 in the figure below.

![Figure 2](image2.png)

(The answer must be in **milliamperes (mA)**. Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) -0.15,-0.1
3) Determine the voltage V_x in the figure below.

(The answer must be in volts (V). Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) 10.8,11.0

4) Determine the current I_x in the figure below.

(The answer must be in milliampere (mA). Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) 4.8,5.1

5) Determine the current I_2 in the figure below.

(The answer must be in milliampere (mA). Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) 2.4,2.6
6) In the figure below, determine the equivalent resistance between A and B.

(The answer must be in **kilohms** (kΩ). Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) -1.1,-0.9

7) In the figure below, determine the equivalent inductance between A and B.

(The answer must be in **millihenries** (mH). Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) 87,89

8) In the figure below, determine the current \(I_1 \) at \(t = 4 \) ms. (The waveform consists of straight line segments)

(The answer must be in **milliamperes** (mA). Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) -2.1,-1.9
9) In the figure below, determine the equivalent resistance between A and B.

\[R = 8 \Omega \]

(The answer must be in ohms (Ω). Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 0

10) In the figure below, determine the equivalent resistance between A and B.

\[R = 7.5 \text{mS} \cdot V_x + 0.8 \text{kΩ} \]

(The answer must be in kilohms (kΩ). Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) -0.20,-0.15