Assignment 1

The due date for submitting this assignment has passed.
As per our records you have not submitted this assignment.

1) In the circuit above, determine I_1. Use magnitude of electronic charge $= 1.6 \times 10^{-19}$ C

(The answer must be in amperes (A). Round off fractional answers to two decimal places.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) -17

2) In the figure above, determine the voltage V_x in (a). The voltage source V_1 is such that when it is connected to a $2k\Omega$ resistor, a current flows as shown in (b).

(The answer must be in volts (V). Round off fractional answers to two decimal places.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 4
3) A resistor's I-V characteristics are shown in the figure above. Determine its resistance.

(The answer must be in kilohms \(k\Omega \). Round off fractional answers to two decimal places.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 30

4) In the figure above, determine the voltage \(v_1 \) at \(t=3 \mu s \). (The waveform consists of straight line segments)

(The answer must be in volts \(V \). Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) -5

5) In the figure above, determine the voltage \(v_c \) at \(t=6 \mu s \). The capacitor is initially discharged (i.e. the capacitor voltage is zero at \(t=0 \)). (The waveform consists of straight line segments)

(The answer must be in millivolts \(mV \). Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 700

6)
In the figure above, determine the voltage v_2 at $t = 4\mu s$. (The waveform consists of straight line segments)

(The answer must be in volts (V). Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 64

7)

In the figure above, determine the current i_1 at $t = 5\mu s$. The inductor current is zero at $t = 0$.
(The waveform consists of straight line segments)

(The answer must be in milliamperes (mA). Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) -7.5

8)

In the figure below, determine the voltage v_1 at $t = 5ms$. The capacitor voltage and inductor current are zero at $t = 0$.
(The waveform consists of straight line segments)

(The answer must be in volts (V). Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 1.5

9)

In the figure below, determine the voltage v_1 at $t = 5ms$. The capacitor voltage is zero at $t = 0$.
(The waveform consists of straight line segments)

(The answer must be in volts (V). Round off fractional answers to one decimal place.)
In the figure above, $i_1 = 5mA \sin(2\pi \times 10^3 t)$. Determine v_1 at $t = 1.5ms$. The capacitor voltage is zero at $t = 0$.

(The answer must be in volts (V). Round off fractional answers to one decimal place.)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 1.6

1 point