Assignment 7

The due date for submitting this assignment has passed. Due on 2021-03-10, 23:59 IST.

As per our records you have not submitted this assignment.

Inner Product, Norm, Orthonormal Basis, Gram-Schmidt Orthonormalisation, Linear Functionals, Orthogonal Complements

1) Which of the following are valid inner products on the given vector spaces?

- \[\langle u, v \rangle' = \langle u + v, u - v \rangle, \text{ where } \langle \cdot, \cdot \rangle \text{ is a valid inner product.} \] 1 point
- \[\langle p, q \rangle = \int_0^2 p(x)q(x)dx \text{ on } \mathbb{P}_2(\mathbb{R}), \text{ the vector space of all polynomials with degree } \leq 2 \]
- \[\langle (a, b), (c, d) \rangle = ac - bd \text{ on } \mathbb{R}^2 \]
- \[\langle (x_1, x_2), (y_1, y_2) \rangle = x_1y_1 - 2x_1y_2 - 2x_2y_1 + 6x_2y_2 \text{ on } \mathbb{R}^2 \]

No, the answer is incorrect.
Score: 0

Accepted Answers:
- \[\langle p, q \rangle = \int_0^2 p(x)q(x)dx \text{ on } \mathbb{P}_2(\mathbb{R}), \text{ the vector space of all polynomials with degree } \leq 2 \]
- \[\langle (x_1, x_2), (y_1, y_2) \rangle = x_1y_1 - 2x_1y_2 - 2x_2y_1 + 6x_2y_2 \text{ on } \mathbb{R}^2 \]

2) Let \(v_1, v_2 \) be two vectors in a vector space \(V \) with norm \(\| v_1 \| = \| v_2 \| = 3 \) and inner product

\[\langle v_1, v_2 \rangle = 3 + 4j. \]

What is the value of \(\langle v_1 + 3v_2, v_1 + (-2j)v_2 \rangle \)?
3) Let \(B = \{u_1, u_2\} \) be a basis for a two-dimensional inner-product space \(V \), where \(u_1 \) and \(u_2 \) are unit-norm vectors and \(\langle u_1, u_2 \rangle = \frac{1}{3} \).

The coordinates of the vectors \(v_1, v_2 \in V \) under the basis \(B \) are \((1, k)\) and \((5, 1)\), respectively. What is the value of \(k \) that makes \(v_1 \) and \(v_2 \) orthogonal to each other?

No, the answer is incorrect. Score: 0
Accepted Answers: 10 + 48j

4) Let \(p(\cdot) \in \mathbb{P}_2(\mathbb{R}) \) be a polynomial such that
\[
\int_{0}^{1} p^2(x) \, dx = 9.
\]

What is the maximum possible value of \(\int_{-1}^{1} p(x)(1 - 3x^2) \, dx \) ? (\(\mathbb{P}_2(\mathbb{R}) \) is the vector space of all polynomials with degree \(\leq 2 \).)

No, the answer is incorrect. Score: 0
Accepted Answers:
- 9
- \(\frac{6}{\sqrt{5}} \)
- \(\frac{36}{5} \)
- 3

5) Let a polynomial \(q(\cdot) \in \mathbb{P}_2(\mathbb{R}) \) be such that \(p(1) = \int_{-1}^{1} p(x)q(x) \, dx \) for every \(p \in \mathbb{P}_2(\mathbb{R}) \). If \(q(x) = ax^2 + bx + c \), What is the value of \(2(a - b - c) \) ? (\(\mathbb{P}_2(\mathbb{R}) \) is the vector space of all polynomials with degree \(\leq 2 \)).
6) Let A be a real matrix of size 4×6 and have its maximum possible rank. What is the dimension of $(\text{null } A)^\perp$? (U^\perp refers to the orthogonal complement of a set U)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 6

1 point

7) Consider the subspace $U = \text{span}\{(1, 2, 3, 8), (1, 3, 4, 11)\}$ in \mathbb{R}^4. Which of the following is an orthonormal basis for U^\perp? Assume the inner product to be the usual dot product. (U^\perp refers to the orthogonal complement of a set U)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 4

1 point

8) Which of the following form an orthonormal basis of \mathbb{R}^3? (Assume usual dot product)

No, the answer is incorrect.
Score: 0
Accepted Answers:

1 point
9) Which of the following are NOT valid norms in \mathbb{R}^3 over \mathbb{R}?

\[
\|x\| = |x_1 + x_2 + x_3| \quad \forall x = (x_1, x_2, x_3) \in \mathbb{R}^3
\]

\[
\|x\| = |x_1| + |x_2| + |x_3| \quad \forall x = (x_1, x_2, x_3) \in \mathbb{R}^3
\]

\[
\|x\| = |x_1^3 + x_2^2 + x_3^2| \quad \forall x = (x_1, x_2, x_3) \in \mathbb{R}^3
\]

\[
\|x\| = x_1^3 + x_2^3 + x_3^3 \quad \forall x = (x_1, x_2, x_3) \in \mathbb{R}^3
\]

No, the answer is incorrect.

Score: 0

Accepted Answers:

\[
\|x\| = |x_1 + x_2 + x_3| \quad \forall x = (x_1, x_2, x_3) \in \mathbb{R}^3
\]

\[
\|x\| = |x_1^3 + x_2^3 + x_3^3| \quad \forall x = (x_1, x_2, x_3) \in \mathbb{R}^3
\]

\[
\|x\| = x_1^3 + x_2^3 + x_3^3 \quad \forall x = (x_1, x_2, x_3) \in \mathbb{R}^3
\]

10) Let U be a subset of some finite dimensional vector space V. Which of the following statements are NOT necessarily valid? (U^\perp refers to the orthogonal complement of a set U)

\[U \text{ is a subspace if and only if } U \cap U^\perp = \{0\}. \]

\[U^\perp \text{ is a subspace only if } U \text{ is a subspace.} \]

\[U + U^\perp = V \text{ if } U \text{ is any subset of vector space } V. \]

\[\text{if } U \text{ and } W \text{ are subspaces of } V, \text{ then } U \cap W = (U^\perp + W^\perp)^\perp \]

No, the answer is incorrect.

Score: 0

Accepted Answers:

\[U \text{ is a subspace if and only if } U \cap U^\perp = \{0\}. \]

\[U^\perp \text{ is a subspace only if } U \text{ is a subspace.} \]

\[U + U^\perp = V \text{ if } U \text{ is any subset of vector space } V. \]

11) Let a, b, c, d be positive real numbers. Find the minimum possible value of

\[
(a + b + c + d) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} \right)
\]

No, the answer is incorrect.

Score: 0

Accepted Answers:

(Type: Numeric) 16

1 point

12) Consider the functions $h_1(x) = x$ and $h_2(x) = e^x$ in the vector space $C[0, 1]$ (the set of all continuous functions $f : [0, 1] \rightarrow \mathbb{R}$) with the inner product defined as,

\[\langle f(x), g(x) \rangle = \int_0^1 f(x)g(x)dx. \]

Calculate $\langle h_1, h_2 \rangle$.

https://onlinecourses.nptel.ac.in/noc21_ee38/unit/unit=39&assessment=106
No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 1