Week 2 - Assignment 2.2.b-c

Task 1: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at the highest point. (Assume no friction.)

Task 2: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at the lowest point. (Assume no friction.)

Task 3: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at the middle point. (Assume no friction.)

Task 4: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 5: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 6: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 7: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 8: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 9: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 10: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 11: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 12: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 13: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 14: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 15: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 16: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 17: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 18: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 19: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 20: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 21: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 22: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 23: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 24: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 25: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 26: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 27: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 28: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 29: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 30: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 31: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 32: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 33: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 34: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 35: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 36: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 37: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 38: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 39: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 40: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 41: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 42: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 43: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 44: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 45: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 46: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 47: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 48: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 49: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 50: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 51: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 52: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 53: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 54: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 55: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 56: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 57: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 58: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 59: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)

Task 60: A simple pendulum has a length of 0.5 m. It is released from a height of 1.0 m. Calculate the energy at any point. (Assume no friction.)