Assignment 7

The due date for submitting this assignment is 11:59 PM PT. As per our normal grading, you have 11:59 PM PT to complete this assignment.

1. Region of Convergence (ROC) corresponding to the Laplace transform of \(f(t) = e^{-at} \), where \(a \geq 0 \).
 - the unit step signal and it is any arbitrary complex number, \(s \).
 - the ROC is \(\mathbb{C} \setminus [0, \infty) \).
 - the ROC is \(\mathbb{C} \).
 - the ROC is \(s > 0 \).

2. The Laplace transform of \(f(t) = e^{-at} \cos(bt) \) has two poles at \(-b \pm j \sqrt{b^2 - a^2} \) where \(j = \sqrt{-1} \).
 - the ROC is \(\mathbb{C} \setminus [-b, b] \).
 - two poles at \(-\frac{b}{2} \pm j \frac{\sqrt{3}}{2} b \).
 - only one pole at \(-b \).
 - only pole at \(b \).

3. Region of Convergence (ROC) corresponding to the Laplace transform of \(f(t) = e^{-at} \). where \(a > 0 \).
 - the unit step signal and it is any arbitrary complex number, \(s \).
 - the ROC is \(\mathbb{C} \setminus (-\infty, 0) \).
 - the ROC is \(s > 0 \).
 - the ROC is \(s < 0 \).

4. The Laplace transform of \(f(t) = e^{-at} \cos(bt) \) has two poles at \(-\frac{b}{2} \pm j \frac{\sqrt{3}}{2} b \).
 - the ROC is \(\mathbb{C} \setminus [-b, b] \).
 - the ROC is \(\mathbb{C} \).
 - two poles at \(-\frac{b}{2} \pm j \frac{\sqrt{3}}{2} b \).
 - only one pole at \(b \).

5. How many different LT systems can have the same transfer function given by \(H(s) = \frac{1}{(s + 3)(s + 1)} \).
 - different LT systems.
 - the same LT systems.
 - no, the answer is incorrect.
 - Accepted Answer: \(n = 2 \).

6. Which of the following signals would have a Laplace transform given by \(F(s) = \frac{2}{s^2 + 2s + 8} \)?
 - \(f(t) = u(t) \) where \(\frac{1}{2}u(t) \)
 - \(f(t) = e^{-at} \) where \(a > 0 \)
 - \(f(t) = \frac{1}{2} \) u(t)
 - \(f(t) = \frac{1}{2} \) u(t)
 - Accepted Answer: \(f(t) = \frac{1}{2} \) u(t).

7. Which of the following signals would have a Laplace transform given by \(F(s) = \frac{1}{s^2 + 6s + 25} \)?
 - \(f(t) = e^{-at} \) where \(a > 0 \)
 - \(f(t) = e^{-at} \) where \(a > 0 \)
 - \(f(t) = e^{-at} \) where \(a > 0 \)
 - \(f(t) = e^{-at} \) where \(a > 0 \)
 - Accepted Answer: \(f(t) = e^{-at} \) where \(a > 0 \).

8. What is the transfer function of an LT system governed by the following differential equation:
 - \(\frac{1}{s^2 + 2s + 1} \)
 - Accepted Answer: \(\frac{1}{s^2 + 2s + 1} \).