Assignment 6

Due on 2020-01-11, 29:58 EST

Multiple Choice Questions
1. What is the correct value for the expression below?
 a) 1
 b) 2
 c) 3
 d) 4

2. The system below is linear:
 a) True
 b) False

3. The system's order is determined by the:
 a) Number of inputs
 b) Number of outputs
 c) Number of states
 d) None of the above

4. The impulse response of a system is:
 a) The output when the input is a step function
 b) The output when the input is a impulse function
 c) The output when the input is a ramp function
 d) The output when the input is a periodic function

5. The system is stable:
 a) True
 b) False

6. The system is controllable:
 a) True
 b) False

7. The system is observable:
 a) True
 b) False

8. The system is minimally causal:
 a) True
 b) False

9. The system is stable:
 a) True
 b) False

10. The system is controllable:
 a) True
 b) False

Multiple Select Questions
1. Which of the following statements are true about the system?
 a) It is linear
 b) It is time-invariant
 c) It is causal
 d) It is memoryless

2. The system is:
 a) Stable
 b) Unstable
 c) Bounded-input bounded-output (BIBO) stable
 d) None of the above

3. The system is:
 a) Causal
 b) Non-causal
 c) Bounded-input bounded-output (BIBO) stable
 d) None of the above

4. The system is:
 a) Stable
 b) Unstable
 c) Causal
 d) Non-causal

5. The system is:
 a) Stable
 b) Unstable
 c) Causal
 d) Non-causal

6. The system is:
 a) Stable
 b) Unstable
 c) Causal
 d) Non-causal

7. The system is:
 a) Stable
 b) Unstable
 c) Causal
 d) Non-causal

Commons for 04-06

Consider the system described by the following transfer function:

\[\frac{Y(s)}{X(s)} = \frac{1}{s^2 + 5s + 6} \]

Determine the poles and zeros.

Determine the system's type and order.

Determine the system's stability.

Determine the system's causality.

Determine the system's bounded-input bounded-output (BIBO) stability.

Determine the system's causality.

Determine the system's bounded-input bounded-output (BIBO) stability.