Assignment 3

Due on 2019-05-03, 23:59 IST.

<table>
<thead>
<tr>
<th>Question</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Let (f(x) = e^x) and (g(x) = \ln(x)), where (u(x) = x^2) and (v(x) = \sin(x)) then the value of (\frac{dv}{dx}) over the interval ([1, 3]) is given by</td>
<td>1 point</td>
</tr>
<tr>
<td>2</td>
<td>Let (f(x) = 1 + x)</td>
<td>1 point</td>
</tr>
<tr>
<td>3</td>
<td>Let (f(x) = 1 + x^2)</td>
<td>1 point</td>
</tr>
<tr>
<td>4</td>
<td>Let (f(x) = 1 + \frac{1}{x})</td>
<td>1 point</td>
</tr>
<tr>
<td>5</td>
<td>For the above question, if the force applied on the ring is given by (F(x) = 1.5x), for all points on the string of length (1), then the displacement (x'(t)) is given by</td>
<td>1 point</td>
</tr>
<tr>
<td>6</td>
<td>For the force given in Question 5, if the sequence is</td>
<td>1 point</td>
</tr>
<tr>
<td>7</td>
<td>For the above question, if the force applied on the string is given by (F(x) = 1.5x), for all points on the string of length (1), then the displacement (x'(t)) is given by</td>
<td>1 point</td>
</tr>
</tbody>
</table>

Additional Questions

1. **What is the form of J. D. O'Malley's function for water hammer in a pipe where the time constant is \(c_\text{tau} \)?**

 \[
 G(t) = \frac{1}{\tau} \exp\left(\frac{-t}{\tau}\right)
 \]

 1 point

2. **What is the form of J. D. O'Malley's function for water hammer in a pipe where the time constant is \(c_\text{tau} \)?**

 \[
 G(t) = \frac{1}{\tau} \exp\left(\frac{-t}{\tau}\right)
 \]

 1 point

3. **Which of the following is true of a J. D. O'Malley's function, \(y(t), x(t) \), in general?**

 - **1 point**
 - **Continuous at \(t = 0 \)**
 - **Discontinuous at \(t = 0 \)**
 - **Continuous at \(t = 0 \)**
 - **Discontinuous at \(t = 0 \)**

4. **In a scattering problem when a bounded object is illuminated by an electromagnetic wave, which of the following theorems is used to express the field outside the object?**

 - **Huygens' Principle**
 - **Extinction Theorem**
 - **Rayleigh's Theorem**
 - **Born's principle**

 1 point

5. **In a scattering problem when a bounded object is illuminated by an electromagnetic wave, which of the following theorems is used to evaluate fields on?**

 - **Huygens' Principle**
 - **Extinction Theorem**
 - **Rayleigh's Theorem**
 - **Born's principle**

 1 point

6. **What is the electric field \(E \) in the vacuum normal to the surface, and \(\mu \) is the unit vector in the tangential direction, then the tangential magnetic field \(H_{\text{tang}} \) can be written as \(\mathbf{H}_{\text{tang}} = \mathbf{E} \times \mathbf{B} \), where the value of \(x \) is**

 - **J0**
 - **J1**
 - **J2**
 - **J3**

 1 point

7. **If \(x(t) \) is an incoming wave at stage \(y \)**

 - **Expression**
 - **Explanation**

 1 point

8. **Why is \(G(t) = \frac{1}{\tau} \exp\left(\frac{-t}{\tau}\right) \) shown as the O'Malley's function in the 3D case, instead of \(G(t) = \frac{1}{\tau} \exp\left(\frac{-t}{\tau}\right) \)?**

 Assume the time constant is chosen to be \(1 \), because \(x(t) = \exp(-t) \) is an outgoing wave at stage \(y \)

 1 point

8. **If \(x(t) \) is an incoming wave at stage \(y \)**

 - **Expression**
 - **Explanation**

 1 point

9. **What is the form of J. D. O'Malley's function for water hammer in a pipe where the time constant is \(c_\text{tau} \)?**

 \[
 G(t) = \frac{1}{\tau} \exp\left(\frac{-t}{\tau}\right)
 \]

 1 point

10. **In a scattering problem when a bounded object is illuminated by an electromagnetic wave, which of the following theorems is used to express the field outside the object?**

 - **Huygens' Principle**
 - **Extinction Theorem**
 - **Rayleigh's Theorem**
 - **Born's principle**

 1 point