Assignment 6

Due on 2020-05-11, 23:59 IST

For this assignment, you have successfully submitted successfully.

Section 1: Question 1

The net force on a particle is given by the equation:

\[F = ma \]

where \(F \) is the net force, \(m \) is the mass of the particle, and \(a \) is the acceleration.

The work done on the particle is given by the equation:

\[W = \int F \, dx \]

where \(W \) is the work done, \(F \) is the force, and \(dx \) is the infinitesimal displacement.

Section 2: Question 2

A student is trying to solve a problem involving the calculation of the work done on a particle. The student is given the following information:

\[F = 5 \, \text{N} \]

\[a = 2 \, \text{m/s}^2 \]

\[x = 3 \, \text{m} \]

The student needs to calculate the work done on the particle.

Section 3: Question 3

A physics experiment involves the measurement of the current flowing through a circuit.

\[I = \frac{V}{R} \]

where \(I \) is the current, \(V \) is the voltage, and \(R \) is the resistance.

The student needs to determine the current flowing through the circuit.

Section 4: Question 4

A student is studying the electric field in a vacuum.

\[E = \frac{F}{q} \]

where \(E \) is the electric field, \(F \) is the force on the charge, and \(q \) is the charge.

The student needs to calculate the electric field at a certain point.

Section 5: Question 5

A physics experiment involves the measurement of the magnetic field.

\[B = \frac{F}{q \, v} \]

where \(B \) is the magnetic field, \(F \) is the force on the charge, \(q \) is the charge, and \(v \) is the velocity.

The student needs to determine the magnetic field at a certain point.

Section 6: Question 6

A student is studying the mechanical energy in a system.

\[K + U = \frac{1}{2} mv^2 + mgh \]

where \(K \) is the kinetic energy, \(U \) is the potential energy, \(m \) is the mass, \(v \) is the velocity, and \(g \) is the acceleration due to gravity.

The student needs to calculate the mechanical energy of the system.

Section 7: Question 7

A physics experiment involves the measurement of the energy in a system.

\[E = \int p \, dp \]

where \(E \) is the energy, \(p \) is the momentum, and \(dp \) is the infinitesimal change in momentum.

The student needs to determine the energy in the system.

Section 8: Question 8

A student is studying the wave properties in a medium.

\[E = \frac{1}{2} k \, a^2 \]

where \(E \) is the energy, \(k \) is the wave number, and \(a \) is the amplitude.

The student needs to calculate the energy of the wave.