Assignment 2

Due: October 8, 2015, 23:30 (IST)

1 Existence and uniqueness

1) A particle travels on the half-line \(x \geq 0 \) with a velocity given by \(\dot{x} = -x^c \), where \(c \) is real and constant.
 a) Find all values of \(c \) such that the origin \(x = 0 \) is a stable fixed point.
 b) Now assume that \(c \) is chosen such that \(x = 0 \) is stable. Can the particle ever reach the origin in a finite time? Specifically, how long does it take for the particle to travel from \(x = 1 \) to \(x = 0 \), as a function of \(c \)?

2 Impossibility of oscillations

1) [No periodic solutions to \(\dot{x} = f(x) \)] Here's an analytical proof that periodic solutions are impossible for a vector field on a line. Suppose on the contrary that \(x(t) \) is a nontrivial periodic solution, i.e., \(x(t) = x(t+T) \) for some \(T > 0 \), and \(x(t) \neq x(t+s) \) for all \(0 < s < T \). Derive a contradiction by considering \(\int_{t}^{t+T} f(x) \frac{dx}{dt} dt \).

3 Potentials

1) For each of the following vector fields, plot the potential function \(V(x) \) and identify all the equilibrium points and their stability.
 a) \(\dot{x} = x(1-x) \)
 b) \(\dot{x} = 2 + \sin x \)
 c) \(\dot{x} = r + x - x^3 \), for various values of \(r \).