Week 7 Assignment 7

Common Base Amplifier

1. Analyze the circuit shown below. The voltage gain of the amplifier can be calculated as follows:

\[V_{out} = V_{in} \times g_m \times r_{f} \]

where:
- \(V_{out} \) is the output voltage
- \(V_{in} \) is the input voltage
- \(g_m \) is the transconductance of the transistor
- \(r_f \) is the feedback resistor

2. The current through the base resistor \(R_b \) can be calculated as:

\[I_{b} = \frac{V_{in} - V_{be}}{R_b} \]

where:
- \(V_{be} \) is the base-emitter voltage

3. The power dissipated in the collector resistor \(R_c \) can be calculated as:

\[P = I_{c} \times V_{cc} \]

where:
- \(I_{c} \) is the collector current
- \(V_{cc} \) is the supply voltage

4. The output voltage swing can be calculated as:

\[V_{out} = \pm (V_{cc} - V_{be}) \]

where:
- \(V_{be} \) is the base-emitter voltage
- \(V_{cc} \) is the supply voltage

5. The overall voltage gain of the amplifier can be calculated as:

\[V_{out} = V_{in} \times g_m \times r_{f} \]

where:
- \(V_{out} \) is the output voltage
- \(V_{in} \) is the input voltage
- \(g_m \) is the transconductance of the transistor
- \(r_f \) is the feedback resistor

6. The input resistance of the amplifier can be calculated as:

\[R_{in} = \frac{1}{g_m} \]

where:
- \(R_{in} \) is the input resistance
- \(g_m \) is the transconductance of the transistor

7. The output resistance of the amplifier can be calculated as:

\[R_{out} = R_c \]

where:
- \(R_{out} \) is the output resistance
- \(R_c \) is the collector resistor

8. The power dissipated in the transistor can be calculated as:

\[P = I_{c} \times V_{ce} \]

where:
- \(I_{c} \) is the collector current
- \(V_{ce} \) is the collector-emitter voltage

9. The input impedance of the amplifier can be calculated as:

\[Z_{in} = R_b \]

where:
- \(Z_{in} \) is the input impedance
- \(R_b \) is the base resistor

10. The output impedance of the amplifier can be calculated as:

\[Z_{out} = r_{f} \]

where:
- \(Z_{out} \) is the output impedance
- \(r_{f} \) is the feedback resistor

11. The bandwidth of the amplifier can be calculated as:

\[f_{3dB} = \frac{1}{2\pi R_c C_e} \]

where:
- \(f_{3dB} \) is the bandwidth
- \(R_c \) is the collector resistor
- \(C_e \) is the collector capacitance