Week 8 Assignment 8

The due date for submitting this assignment is 87.
As per your needs, you may not submit this assignment.

1. A steady, uniform current of 200 mA flows in an electrolytic cell. The resistance of the cell is 500 
Ω. If the voltage of the speed is a generator, then the voltage current in each case being 99k.

Current data for Question 1 to 3:

1. Calculate the voltage difference across the cell. (Ans. 99k)

2. If the voltage across the cell is 95k, what is the value of the resistance? (Ans. 99k)

3. Calculate the current flowing through the cell. (Ans. 99k)

Current data for questions 2 to 4:

2. A steady, uniform current of 400 mA flows in an electrolytic cell. The resistance of the cell is 500 
Ω. If the voltage of the speed is a generator, then the voltage current in each case being 99k.

4. Calculate the voltage difference across the cell. (Ans. 99k)

5. If the voltage across the cell is 95k, what is the value of the resistance? (Ans. 99k)

6. Calculate the current flowing through the cell. (Ans. 99k)

Current data for questions 3 to 5:

3. A steady, uniform current of 500 mA flows in an electrolytic cell. The resistance of the cell is 500 
Ω. If the voltage of the speed is a generator, then the voltage current in each case being 99k.

5. Calculate the voltage difference across the cell. (Ans. 99k)

6. If the voltage across the cell is 95k, what is the value of the resistance? (Ans. 99k)

7. Calculate the current flowing through the cell. (Ans. 99k)

Current data for questions 5 to 7:

5. A steady, uniform current of 600 mA flows in an electrolytic cell. The resistance of the cell is 500 
Ω. If the voltage of the speed is a generator, then the voltage current in each case being 99k.

7. Calculate the voltage difference across the cell. (Ans. 99k)

8. If the voltage across the cell is 95k, what is the value of the resistance? (Ans. 99k)

9. Calculate the current flowing through the cell. (Ans. 99k)