Assignment 11

The due date for submitting this assignment has passed.
As per our records you have not submitted this assignment.

Note: If you have any doubts/queries regarding this quiz, please ask it in the forum well before the submission deadline. We will be happy to answer your queries.

1) COMMON DATA FOR Q.1 TO Q.7:

Consider the figure shown below:

![Circuit Diagram]

The waveform of \(V_1 \) is

a. Triangular
b. Square
c. Pulse train
d. Sinusoidal

No, the answer is incorrect.
Score: 0
Accepted Answers:
b.
2) **The waveform of** V_2 **is**

 a. Triangular
 b. Square
 c. Pulse train
 d. Sinusoidal

 ![Options](148x774)

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 a.

3) **How much is the peak-to-peak value of** V_2 **(in V)?**

 ![Input Field](29x774)

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 (Type: Numeric) 20

4) **How much is the peak-to-peak value of** V_2 **(in V)?**

 ![Input Field](29x774)

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 (Type: Numeric) 20

5) **How much is the slope of the triangular waveform generated (in V/s)?**

 ![Input Field](29x774)

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 (Type: Numeric) 3

6) **What is the frequency of** V_1 **or** V_2 **(in Hz)?**

 ![Input Field](29x774)

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 (Type: Numeric) 0.075

7) **Which resistance in the circuit can be changed to change the frequency without changing the peak-to-peak value of any generated waveform?**

 a. R_1
 b. R_2
 c. R_3
 d. Any of the above
 e. None of the above

 ![Options](148x774)
8) COMMON DATA FOR Q.8 TO Q.12:

This circuit shows a 555 timer connected as an astable multivibrator.

Peak-to-peak value of \(V_c \) is (in V)?

[Please enter only the numeric value without any unit.]

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Numeric) 5

9) When \(V_c \) is increasing then \(V_0 \) is?

a. High
b. Low

c. d. e.

No, the answer is incorrect.
Score: 0
Accepted Answers:

10) Calculate the ON (high) time of \(V_0 \) (in seconds)

[Please enter only the numeric value without any unit.]

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) 0.65, 0.75

11) Calculate the OFF (low) time of \(V_0 \) (in seconds)

[Please enter only the numeric value without any unit.]

No, the answer is incorrect.
Score: 0
Accepted Answers:
12) Calculate the frequency of V_o (in Hz)

[Please enter only the numeric value without any unit.]

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) 0.36, 0.46

13) For the given figure, calculate the time period of V_o (in seconds)

[Please enter only the numeric value without any unit.]

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) 10, 12

14) The given figure is of a monostable multivibrator. The forward drop of is 0.7 V. Estimate the pulse width of this circuit (in seconds)

[Please enter only the numeric value without any unit.]

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) 3.5, 4