Progress

Course outline

Week 1 Lectures

Week 2 Lectures

Week 3 Lectures

Week 4 Lectures

Week 5 Lectures

Week 6 Lectures

optical fibers

propagation

fibers

 Pre-chirped pulses and Interand Intra-modal dispersion in

Beam propagation method

O Polarization effects on pulse

Modes in Optical fibers &

Graded index fibers

O Quiz: Assignment-6

O Assignment-6 Solutions

Week-6 Feedback

Week 7 Lectures

Week 8 Lectures

Week 9 Lectures

Week 10 Lectures

Week 11 Lectures

Week 12 Lectures

Pulse propagation in optical

Week- 0

How to access the portal

NPTEL » Fiber-Optic Communication Systems and Techniques

1 point

Unit 9 - Week 6 Lectures

1) Which of the following entermone is an in- designed Granation pulses (ph. – Dispersion coefficience, C – Chapting personners) When ph. C < 0, polar width of a shirped Granation pulse increases with disease or monomically. When ph. C < 0, polar width of a shirped Granation pulse from discourse and then goes on increasing. When ph. C < 0, polar width of a shirped Granation pulse from discourse and then goes on increasing. When ph. C < 0, polar width of a shirped Granation pulse from discourse and then goes on increasing. When ph. C < 0, polar width of a shirped Granation pulse from discourse and then goes on increasing. When ph. C < 0, polar width of a shirped Granation pulse from discourse and then goes on increasing. When ph. C < 0, thirped Granation pulse broadens monomically with discourse as a next closure than that of the underlying pulse. The controlled of the controlled of the shirped Granation pulse from discourse and then goes in the controlled of the shirped Granation pulse from discourse and then goes in Granation pulse from the controlled of the shirped Granation pulse from the pulse from the controlled of the shirped Granation pulse from the shirped Granation pulse from the controlled of the	Assignment-6	
When $\rho_i C < 0$, polar width of a shirped Gaussian pulse focuses with distance monotonically. When $\rho_i C < 0$, you width of a shirped Gaussian pulse force document for a notation distance and then goes an documents. When $\rho_i C < 0$, you width of a shirped Gaussian pulse force document for a notation distance and then goes an documents. Note of the control of	As per our records you have not submitted this assignment.	Due on 2019-09-11, 23:59 IS
When $\beta_{i} \in C$ is, place within of a disperd Genomes pulse increases with distance monomically. When $\beta_{i} \in C$ is, pulse within of a disperd Genomical pulse increases of an extent distance and then goes on increasing. When $\beta_{i} \in C$ is, pulse within of a disperd Genomical pulse from increases for a certain distance and then goes on decreating. When $\beta_{i} \in C$ is, pulse within of a disperd Genomical pulse from increases for a certain distance and then goes on decreating. When $\beta_{i} \in C$ is, pulse within of a disperd Genomical pulse for a certain distance and then goes on the certain of th		arameter) 1 p
When $\beta_i \in C$ is pulse with at a sharped Causains palse front decreases for a certain alteria and thoughout the page on incomming. When $\beta_i \in C$ is it puts with at a sharped Causains palse front decreases for a certain alteria and thoughout palse and the page on the controlling. Not be served in informers. Acceptable Assessment in informers. 27 When $\beta_i \in C$ is dispered Causains palse front decreases for a certain distance and then goes on decreasing. A when $\beta_i \in C$ is in part with all of a chaped Causains palse front decreases for a certain distance and then goes on the contribution of the contribution of the contribution palse front decreases for a certain distance and then goes on the contribution palse. The contribution of the contribution of the contribution palse front decreases for a certain distance and then goes on the contribution palse. The contribution of the contribution palse front decreases for a certain distance and then goes on the contribution palse. The contribution of the contribution palse front front palses for the contribution palses from the contribution of the contribution palses from the contribution palses from the contribution of the contribution	When $\beta_2 C < 0$, pulse width of a chirped Gaussian pulse decreases with distance monotonically.	
When $\beta_c \in C$ is, pulse with of a charged Genomian pulse force increases for a certain distance and then goes on increasing. When $\beta_c \in C$ is, pulse with of a charged Genomian pulse force increases for a certain distance and then goes on decreasing. When $\beta_c \in C$ is, during which of a charged Genomian pulse force increases for a certain distance and then goes on increases for a certain distance and as case shower than that of the sanchaped pulse. If you have not been supported Genomian pulse broadens monoconomially with distance at a case shower than that of the sanchaped pulse. If you have not been supported Genomian pulse broadens monoconomially with distance at a case shower than that of the sanchaped pulse. If you have not been supported Genomian pulse broadens monoconomially with distance at a case shower than that of the sanchaped pulse. If you have not been supported Genomian pulse broadens monoconomially with distance at a case shower than that of the sanchaped pulse. If you have not been supported Genomian pulse broadens monoconomially with distance at a case shower than that of the sanchaped pulse. If you have not been supported Genomian pulse broadens monoconomially with distance at a case shower than that of the sanchaped pulse. If you have not been supported Genomian pulse broadens shower than the case of the sanchaped pulse. If you have not been supported Genomian pulse broadens shower than the case of the sanchaped pulse shower is increased. If you have not been supported genomian coefficients (β_c) for the fifter given in Question 3 is . If you have not been supported genomian coefficients (β_c) for the fifter given in Question 3 is . If you have not been supported by the sanchaped shower in become coefficients (β_c) for the fifter given in Question 3, and that the pulse with the space of the IT is sanchaped and the sanchaped shower in the case of the IT is sanchaped since the pulse of the DIT is and the third pulse of the IT is and the third pulse is in the case of the pul		
Note that were the control of any broad Canacian pains for in borrosso for a corrain distance and does goes no decreasing. No. the naiswest in Sections of the Canacian pains for information for a corrain distance and from goes on decreasing. No. the pains of the Canacian pains for information pains for information for a corrain distance and from goes on decreasing. When it is a found with of a chapsel Gancian pains for information monocontactily with distance as a ross slower than that of the underpost pains. If you have goes a chapsel of the chapsel		easing.
No. the answers is incorrect. Score. 10 The Comments of American Comments of American Comments of the Comments of the American Comments of the Comments of the Comments of the Comments of Comments		easing.
Accepted Accepted Assessment **Per C C Q, uniqued Guessian polar femaleum monumorically with distance at a rate sharer than that of the undringed pulse. **J. Whan & C C Q, chipped Guessian polar femaleum monumorically with distance at a rate sharer than that of the undringed pulse. **J. Whan & C C Q, chipped Guessian polar femaleum monumorically with distance at a rate sharer than that of the undringed pulse. **J. Whan & C C Q, chipped Guessian polar femaleum monumorically with distance at a rate sharer than that of the undringed pulse. **J. Whan & C C Q, chipped Guessian polar femaleum monumorically with distance at a rate sharer than that of the undringed pulse. **J. Accepted Assessment in the control of the	No, the answer is incorrect.	
30 No. Parameter is incorrect. The colored Consequence of Colored Consequence of the Colored	Accepted Answers: When $\beta_2 C < 0$, pulse width of a chirped Gaussian pulse first decreases for a certain distance and then goes on	
The Pale No. the survey is incorrect. Accepted Animers: (10.05 p. plum's Zan, or new dependent wavelength for the first is 1-1550 pm. Assuming that the dispersion varies linearly with wavelength, if the dispersion slope for the first is 10.05 p. plum's Zan, or new depending for the first is 10.05 p. plum's Zan, or new definition of Ta and DCT see 0.2 dilik m and 0.4 dilik m respectively, the first is 10.05 p. plum's Zan, or new dependent for the first is 10.05 p. plum's Zan, or new definition of Ta and DCT see 0.2 dilik m and 0.4 dilik m respectively, the first is 10.05 p. plum's Zan, or new dependent for the first is 10.05 p. plum's Zan, or new dependent for the first is 10.05 p. plum's Zan, or new dependent for the first is 10.05 p. plum's Zan, or new dependent for the first is 10.05 p. plum's Zan, or new dependent for n		hirned nulse.
No. the accessor is incorrect. Accepted Answers: 3) A 5 No savige mode the has D = 10 patem — Am Re 2 = 1500 mm. Assuming that the dispersion varies linearly with wavelength, if the dispersion slope for the File (Accepted Answers: 1) 1372 mm. 11722 mm. 1180 mm. 11972 mm. 1190 mm		imped pulse.
Score 1 3. A Si in single mode fiber has D = 10 ps/mm - Rm for 3 = 1550 mm. Assuming that the dispersion varies linearly with wavelength, if the dispersion slopes for the F is in OLOS ps/mm / Rm, the zero dispersion wavelength for the fiber is 11277 am in 100 ps/mm / Rm, the zero dispersion wavelength for the fiber is 11272 am in 11290 mm in 1200 mm in 1200 mm 1200 mm in 1200 mm 1200 mm 1200 mm 1200 mm 1201 mm in 1207 km		
A So has insight mode fiber has D = 10 pJJ/mm — for fix a 1550 pJm. Assuming that the dispension varies linearly with wavelength, if the dispension slope for the fix is 10.05 pJm/m²/m², not zero dispension wavelength for the fiber is 11772 am 11772	Score: 0	
is a count of part of the power lamphed into the transmission fiber (TF) of length 40 km having dispersion coefficients of -12 ps ³ /km -1.274 ps ³ /km -1.27		
1909 mm 1909	3) A 50 km single mode fiber has $D = 10 ps/nm - km$ for $\lambda = 1550 nm$. Assuming that the dispersion varies linear is $0.045 ps/nm^2/km$, the zero-dispersion wavelength for the fiber is	arly with wavelength, if the dispersion slope for the 1
1900 mm 1900 mm No. the answer is incorrect.	1327.7 nm	
(A consider Answers: 1377.7 mm 1377.8 mm 1377.8 mm 1377.8 mm 1377.8 mm 12.74 ps **Ikm 1		
Score C 127:7 am 127:7 bm 128:7 bm 129:7 b		
4) The value of dispersion coefficient (\$\hbeta\$) for the fiber given in Question 3 is 7 -6.37 ps²/km -1.27 ps²/km -8.2 ps²/km -8.		
- 0.37 ps ³ /km - 1.2.74 ps ³ /km - 1.0 ps ³ /km - 3.2 ps ³ /km - 3.2 ps ³ /km No. the answer is incorrect. Score to Sco		
- 6.37 ps²/km - 10 ps²/km - 8.2 ps²/km - 8.2 ps²/km - 8.3	4) The value of dispersion coefficient (β ₂) for the fiber given in Question 3 is	1
- 12.74 px²/km - 0.12.74 px²/km - 10. px²/km - 10. px²/km No. the answer is incorrect. Scorec 0 Scorec 0 A Gaussian pale is launched into a transmission fiber (TF) of length 40 km having dispersion coefficient of -12 px²/km. The TF is followed by a dispersion - 17. mpensation fiber (DCF) having dispersion coefficient of 24 px²/km. The length of the DCF such that the pulse width of the pulse at the input of the TF is same as that at the object of the DCF is a same as that at the object of the DCF is a same is incorrect. Scorec 0 10 n March answers is incorrect. Scorec 0 11 n Question 5, if the power launched into the transmission fiber is 2 mW and the loss coefficients of TF and DCF are 0.2 dB/km and 0.4 dB/km respectively, the or is the output of the DCF is (ignore the splice loss between TF and DCF) 1. If m Question 5, if the power launched into the transmission fiber is 2 mW and the loss coefficients of TF and DCF are 0.2 dB/km and 0.4 dB/km respectively, the or is the output of the DCF is (ignore the splice loss between TF and DCF) 1. If m Question 5, if the power launched into the transmission fiber is 2 mW and the loss coefficients of TF and DCF are 0.2 dB/km and 0.4 dB/km respectively, the or is the output of the DCF is (ignore the splice loss between TF and DCF) 1. If m Question 5, if the power launched into the fiber given in Question 3, the delay between the highest and lowest frequency components is 1. If m optical signal of bandwidth 10 GHz is launched into the fiber given in Question 3, the delay between the highest and lowest frequency components is 1. If m optical signal of bandwidth 10 GHz is launched into the fiber given in Question 3, the delay between the highest and lowest frequency components is 1. If m optical signal of bandwidth 10 GHz is launched into the fiber given in Question 3, the delay between the highest and lowest frequency components is 1. If m optical signal of bandwidth 10 GHz is launched into the fiber given in Question 3, the delay between the highest and lowest freque		
O In Dispiritum 8.2. ps 2 from 8.5. ps 2 from 8.6. the answer is incorrect. Accepted Answers: 1.2.7.4 ps 2 from 9. A Cassasian palke is launched into a transmission filter (TF) of length 40 km having dispersion coefficient of -12 ps 2 from 1.2.7.4 ps 2 from 9. A Cassasian palke is launched into a transmission filter (TF) of length 40 km having dispersion coefficient of -12 ps 2 from 1.2.7.4 ps 2 from 1.2.7.4 ps 2 from 1.2.7.4 ps 2 from 1.2.8 km 1.2.9 km 1.2.0 km 1.2.		
-8.2 ps ² /km -8.2 ps ² /km -8.2 ps ² /km No, the answer is incorrect. Socrete 0 Socrete 10 Socr	*	
-8.2 p. p. p/km. Now, the answer is incorrect. See the answer is incorrect.	$-10 ps^2/km$	
Score 1 Accepted Answers: -12.74 ps */km. 5). A Gaussian pulse is launched into a transmission fiber (TF) of length 40 km having dispersion coefficient of -12 ps */km. The TF is followed by a dispersion function (DCF) having dispersion coefficient of 24 ps */km. The length of the DCF such that the pulse width of the pulse at the input of the TF is same as that at the other DCF is 120 km 80 km 100 km 20 km 30 km No. the answer is incorrect. Scores 0 11 In accepted Answers: 20 In Question 5, if the power baunched into the transmission fiber is 2 mW and the loss coefficients of TF and DCF are 0.2 dB km and 0.4 dB km respectively, the were at the output of the DCF is (ignore the splice loss between TF and DCF) 0.1 mW 0.6 mW No. the answer is incorrect. Scores 0 10.77 ps 10.77 ps 12.20 ps 40.04 ps No. the answer is incorrect. Score 0 10.77 ps 12.20 ps 40.04 ps No. the answer is incorrect. Score 0 10.77 ps 12.20 ps 40.04 ps No. the answer is incorrect. Score 0 10.77 ps 12.20 ps 40.04 ps No. the answer is incorrect. Score 0 Accepted Answers: 40.07 mV False No. the answer is incorrect. Score 0 10.77 ps 10.77 ps 12.20 ps 40.04 ps No. the answer is incorrect. Score 0 Accepted Answers: 40.07 mV False No. the answer is incorrect. Score 0 Accepted Answers: 71 ms makes is incorrect. Score 0 Accepted Answers: 72 ms 73 ms ms ms is incorrect. Score 0 Accepted Answers: 74 ms 75 ms ms ms is incorrect. Score 0 Accepted Answers: 76 ms ms ms is incorrect. Score 0 No. the answer is incorrect. Score 1 No. the answer is incorrect.		
Accepted Answers: -1.2.7.4 ps ⁻¹ /km 5) A Gaussian pulse is launched into a transmission fiber (TF) of length 40 km having dispersion coefficient of -12 ps ⁻¹ /km. The TF is followed by a dispersion 1, impressed in the CPCF) having dispersion coefficient of 24 ps ⁻¹ /km. The length of the DCF such that the pulse width of the pulse at the input of the TF is same as that at the othe DCF is the DCF is with the pulse of the TF is same as that at the other DCF is 0 km 20 km 20 km 30 km No, the answer is incorrect. Score 0 Accepted Answers: 0.1 a W 0.5 mW 1.4 mW 0.6 mW No, the answer is incorrect. Score 0 Accepted Answers: 41 17 18 19 19 19 10 10 10 10 10 11 11		
No, the answer is incorrect. Score: 0 6) In Question S, if the power launched into the transmission fiber is 2 mW and the loss coefficients of TF and DCF are 0.2 dB/km and 0.4 dB/km respectively, the were at the output of the DCF is (ignore the splice loss between TF and DCF) 1.1 mW 0.05 mW 1.4 mW 0.6 mW No, the answer is incorrect. Score: 0 7) If an optical signal of bandwidth 10 GHz is launched into the fiber given in Question 3, the delay between the highest and lowest frequency components is 10.77 ps 10.27 p	mpensation fiber (DCF) having dispersion coefficient of 24 ps²/km. The length of the DCF such that the pulse width of the DCF is 80 km 120 km 20 km	
Accepted Answers: 20 km 5) In Question 5, if the power launched into the transmission fiber is 2 mW and the loss coefficients of TF and DCF are 0.2 dB/km and 0.4 dB/km respectively, the were at the output of the DCF is (ignore the splice loss between TF and DCF) 0.1 mW 0.0.5 mW 1.4 mW 0.6 mW No, the answer is incorrect. Score: 0 10.77 ps 32.03 ps 20.ps 40.04 ps No, the answer is incorrect. Score: 0 Accepted Answers: 40.04 ps 8) Graded index optical fibers cause less dispension-induced pulse broadening than the step index optical fibers. 7 in True False No, the answer is incorrect. Score: 0 Accepted Answers: 9) In a birefringent crystal, 7 in The No, the answer is incorrect. No, the answers: incorrect. No, the answer is incorrect. No, the answer is incorrect. No, the answer is incorrect.	No, the answer is incorrect.	
6) In Question 5, if the power launched into the transmission fiber is 2 mW and the loss coefficients of TF and DCF are 0.2 dB/km and 0.4 dB/km respectively, the were at the output of the DCF is (ignore the splice loss between TF and DCF) 0.1 mW 0.05 mW 1.4 mW 0.6 mW No, the answer is incorrect. Score: 0 10.77 ps 32.03 ps 20.ps 40.04 ps No, the answer is incorrect. Score: 0 Accepted Answers: 40.04 μs No, the answer is incorrect. Score: 0 Accepted Answers: 40.04 μs No, the answer is incorrect. Score: 0 Accepted Answers: 40.07 ms 10.77 ps 32.03 ps 20.05 ms 40.04 ps No, the answer is incorrect. Score: 0 Accepted Answers: 40.07 ms 10.77 ps 32.03 ps 40.04 ps No, the answer is incorrect. Score: 0 Accepted Answers: 40.07 ms 10.77 ps 40.07 ps	Accepted Answers:	
wer at the output of the DCF is (ignore the splice loss between TF and DCF) 0.1 mW 0.05 mW 1.4 mW 0.6 mW No, the answer is incorrect. Score: 0 7 if an optical signal of bandwidth 10 GHz is launched into the fiber given in Question 3, the delay between the highest and lowest frequency components is 10.77 ps 3.2.03 ps 20 ps 40.04 ps No, the answer is incorrect. Score: 0 6. Graded index optical fibers cause less dispersion-induced pulse broadening than the step index optical fibers. 7 increase incorrect. Score: 0 Accepted Answers: 7 increase incorrect.		re 0.2 dB/km and 0.4 dB/km respectively, the
0.05 mW 1.4 mW 0.6 mW No, the answer is incorrect. Score: 0 Accepted Answers: 0.05 mW 7) If an optical signal of bandwidth 10 GHz is launched into the fiber given in Question 3, the delay between the highest and lowest frequency components is 10.77 ps 32.03 ps 20 ps 40.04 ps No, the answer is incorrect. Score: 0 Accepted Answers: 40.04 ps 1 True False No, the answer is incorrect. Score: 0 True False No, the answer is incorrect. Score: 0 No, the answer is incorrect. Noore: 0 No, the answer is incorrect.	over at the output of the DCF is (ignore the splice loss between TF and DCF)	The state of the s
1.4 mW 0.6 mW No, the answer is incorrect. Score: 0 Accepted Answers: 0.05 ml/ 7) If an optical signal of bandwidth 10 GHz is launched into the fiber given in Question 3, the delay between the highest and lowest frequency components is 10.77 ps 23.03 ps 20 ps 40.04 ps No, the answer is incorrect. Score: 0 Accepted Answers: 40.04 ps 8) Graded index optical fibers cause less dispersion-induced pulse broadening than the step index optical fibers. 1 True False No, the answer is incorrect. Score: 0 Accepted Answers: True 9) In a birefringent crystal, 1 n _x = n _y n _x ≠ n _y No, the answer is incorrect.		
No, the answer is incorrect. Score: 0 Accepted Answers: 0.05 mW 7) If an optical signal of bandwidth 10 GHz is launched into the fiber given in Question 3, the delay between the highest and lowest frequency components is 10.77 ps 22.03 ps 20.04 ps 40.04 ps No, the answer is incorrect. Score: 0 Accepted Answers: 40.04 ps 8) Graded index optical fibers cause less dispersion-induced pulse broadening than the step index optical fibers. 1 True False No, the answer is incorrect. Score: 0 Accepted Answers: True 9) In a birefringent crystal, n _x = n _y n _x ≠ n _y No, the answer is incorrect.		
Score: 0 Accepted Answers: 0.05 mW 7) If an optical signal of bandwidth 10 GHz is launched into the fiber given in Question 3, the delay between the highest and lowest frequency components is 10.77 ps 22.03 ps 20.04 ps 40.04 ps No, the answer is incorrect. Score: 0 Accepted Answers: 40.04 ps 8) Graded index optical fibers cause less dispersion-induced pulse broadening than the step index optical fibers. 1 True False No, the answer is incorrect. Score: 0 Accepted Answers: True 9) In a birefringent crystal, 1 n _x = n _y n _x ≠ n _y No, the answer is incorrect.		
 0.05 mW 7) If an optical signal of bandwidth 10 GHz is launched into the fiber given in Question 3, the delay between the highest and lowest frequency components is 10.77 ps 32.03 ps 20 ps 40.04 ps No, the answer is incorrect. Socre: 0 Accepted Answers: 40.04 ps 8) Graded index optical fibers cause less dispersion-induced pulse broadening than the step index optical fibers. 1 True False No, the answer is incorrect. Socre: 0 Accepted Answers: 7nuc 9) In a birefringent crystal, 7nuc n_x ≠ n_y n_y No, the answer is incorrect. 	Score: 0	
$\begin{array}{c} 10.77 \text{ ps} \\ 32.03 \text{ ps} \\ 20 \text{ ps} \\ 40.04 \text{ ps} \\ \end{array}$ No, the answer is incorrect. Score: 0 Accepted Answers: $40.04 \text{ ps} \\ \end{array}$ 8) Graded index optical fibers cause less dispersion-induced pulse broadening than the step index optical fibers. 1 True False No, the answer is incorrect. Score: 0 Accepted Answers: $True$ 9) In a birefringent crystal, 1		
32.03 ps 20 ps 40.04 ps No, the answer is incorrect. Score: 0 Accepted Answers: 40.04 ps 8) Graded index optical fibers cause less dispersion-induced pulse broadening than the step index optical fibers. 1 True False No, the answer is incorrect. Score: 0 Accepted Answers: $True$ 9) In a birefringent crystal, 1 $n_x = n_y$ $n_x \neq n_y$ No, the answer is incorrect.	7) If an optical signal of bandwidth 10 GHz is launched into the fiber given in Question 3, the delay between the high	est and lowest frequency components is
20 ps 40.04 ps No, the answer is incorrect. Score: 0 Accepted Answers: 40.04 ps 8) Graded index optical fibers cause less dispersion-induced pulse broadening than the step index optical fibers. 1 True False No, the answer is incorrect. Score: 0 Accepted Answers: True 9) In a birefringent crystal, 1 1 1 1 1 1 1 1 1 1 1 1 1	•	
Score: 0 Accepted Answers: 40.04 ps 8) Graded index optical fibers cause less dispersion-induced pulse broadening than the step index optical fibers. 1 True False No, the answer is incorrect. Score: 0 Accepted Answers: True 9) In a birefringent crystal, 1 1 No, the answer is incorrect.	○ 40.04 ps	
### 80 #	Score: 0	
True False No, the answer is incorrect. Score: 0 Accepted Answers: $True$ 9) In a birefringent crystal, $n_x = n_y$ $n_x \neq n_y$ No, the answer is incorrect.		
False No, the answer is incorrect. Score: 0 Accepted Answers: $True$ 9) In a birefringent crystal, $n_x = n_y$ $n_x \neq n_y$ No, the answer is incorrect.	8) Graded index optical fibers cause less dispersion-induced pulse broadening than the step index optical fibers.	1
No, the answer is incorrect. Score: 0 Accepted Answers: $True$ 9) In a birefringent crystal, $n_x = n_y$ $n_x \neq n_y$ No, the answer is incorrect.		
Score: 0 Accepted Answers: True 9) In a birefringent crystal, $n_x = n_y$ $n_x \neq n_y$ No, the answer is incorrect.		
9) In a birefringent crystal, $n_{x} = n_{y}$ $n_{x} \neq n_{y}$ No, the answer is incorrect.	Score: 0 Accepted Answers:	
$n_x = n_y$ $n_x \neq n_y$ No, the answer is incorrect.	·	
$n_x = n_y$ $n_x \neq n_y$ No, the answer is incorrect.		1,
$n_x \neq n_y$ No, the answer is incorrect.		
No, the answer is incorrect.		
	$n_{\rm Y} \neq n_{\rm p}$	
$n_x \neq n_y$	No, the answer is incorrect. Score: 0 Accepted Answers:	

10) In a graded index optical fiber ($\alpha = 2$) having V = 10, the total number of guided modes is

O 50

75

O 25

O 10

25

No, the answer is incorrect. Score: 0

Accepted Answers: