1) What is the energy of a light (\(\lambda = 4.0 \text{ nm} \)) photon?
\[E = \frac{hc}{\lambda} \]
\[= \frac{(6.626 \times 10^{-34} \text{ J s})(3 \times 10^8 \text{ m/s})}{4.0 \times 10^{-7} \text{ m}} \]
\[= 4.95 \times 10^{-19} \text{ J} \]

2) Which of the following electric fields represents a uniform plane wave traveling in the \(+x \)-direction?
\[\text{Answer Options:} \]
\[\mathbf{E}(x, t) = \mathbf{E}_0 \mathbf{e}_x \]
\[\mathbf{E}(x, t) = \mathbf{E}_0 \mathbf{e}_y \]
\[\mathbf{E}(x, t) = \mathbf{E}_0 \mathbf{e}_z \]
\[\mathbf{E}(x, t) = \mathbf{E}_0 \mathbf{e}_y \]
\[\mathbf{E}(x, t) = \mathbf{E}_0 \mathbf{e}_z \]
No, the answer is incorrect.

3) The wave equation for the magnetic field \(\mathbf{B}(x, t) \) corresponding to a uniform plane wave propagating in the \(+z \)-direction is
\[\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \]
\[\nabla \times \mathbf{B} = \mu_0 \mathbf{J} \]
\[\nabla \times \mathbf{E} = \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \]
\[\nabla \times \mathbf{B} = \mu_0 \mathbf{J} \]
No, the answer is incorrect.

4) For the electric field \(\mathbf{E}(x, t) = \mathbf{E}_0 \mathbf{e}_x \) given in Question 2, the corresponding magnetic field component is
\[\mathbf{E}_x(\mathbf{x}, t) = \mathbf{E}_0 \]
\[\mathbf{E}_y(\mathbf{x}, t) = 0 \]
\[\mathbf{E}_z(\mathbf{x}, t) = 0 \]
No, the answer is incorrect.

5) Given \(\mathbf{E}(x, t) = \mathbf{E}_0 \mathbf{e}_x \) and \(\mathbf{B}(x, t) = \mathbf{B}_0 \mathbf{e}_y \), determine the polarization of the plane wave.
\[\text{Linear} \]
\[\text{Right circular} \]
\[\text{Left circular} \]
No, the answer is incorrect.

6) For the electric field \(\mathbf{E}(x, t) = \mathbf{E}_0 \mathbf{e}_x \) given in Question 2, the direction of propagation of the uniform plane wave is
\[\text{X-axis} \]
\[\text{Y-axis} \]
\[\text{Z-axis} \]
No, the answer is incorrect.

7) Using the electric field equations given in Question 3, the relative distance periodicity of the medium is
\[\lambda \]
\[\frac{\lambda}{2} \]
\[\frac{\lambda}{4} \]
No, the answer is incorrect.

8) The transverse Poynting vector of the uniform plane wave given in Question 3 is
\[\mathbf{S}_p(\mathbf{x}, t) = \frac{1}{2} \mathbf{E}(\mathbf{x}, t) \times \mathbf{B}(\mathbf{x}, t) \]
\[\mathbf{S}_p(\mathbf{x}, t) = \frac{1}{2} \mathbf{E}(\mathbf{x}, t) \times \mathbf{B}(\mathbf{x}, t) \]
\[\mathbf{S}_p(\mathbf{x}, t) = \frac{1}{2} \mathbf{E}(\mathbf{x}, t) \times \mathbf{B}(\mathbf{x}, t) \]
No, the answer is incorrect.

9) The electric field of a uniform plane wave that is propagating in the \(+x \)-direction with the propagation vector making an angle of \(30^\circ \) with respect to the \(+x \)-axis is
\[\mathbf{E}(\mathbf{x}, t) = \mathbf{E}_0 \sin(kx - \omega t) \mathbf{e}_x \]
\[\mathbf{E}(\mathbf{x}, t) = \mathbf{E}_0 \sin(kx - \omega t) \mathbf{e}_x \]
\[\mathbf{E}(\mathbf{x}, t) = \mathbf{E}_0 \sin(kx - \omega t) \mathbf{e}_x \]
No, the answer is incorrect.