1. The magnetic flux through the surface is equal to
 - Surface integral of B over that surface.
 - Surface integral of H over that surface.
 - Line integral of B over that surface.
 - Line integral of H over that surface.

2. The direction of the force, acting on the wire of length \mathbf{dl} carrying a current I in a magnetic field \mathbf{B} is
 - Perpendicular to both \mathbf{dl} and magnetic field
 - Parallel to both \mathbf{dl} and magnetic field
 - Perpendicular to \mathbf{dl} and parallel to magnetic field
 - Parallel to \mathbf{dl} and perpendicular to magnetic field

3. The magnetic field arising from the current in a long straight wire has
 - The form of circles centered on the wire.
 - Direction same as the direction of the current.
 - Direction opposite to the direction of the current.
 - Magnetic field and the current are not related to each other

4. A current element is located at the origin and is directed in the $+y$ direction. By inspection determine the direction of $d\mathbf{H}$ at (a) $(1,0,0)$ (b) $(0,0,1)$
 - (a) $-z$ direction (b) x direction
 - (a) $+z$ direction (b) $-x$ direction
 - (a) $+x$ direction (b) $-z$ direction
 - (a) $+z$ direction (b) $+x$ direction

5. Identify the magneto Static Curl equation among the options given here
 - $\nabla \times \mathbf{B} = \mu_0 \mathbf{j}$
 - $\nabla \times \mathbf{B} = 0$
 - $\nabla \times \mathbf{H} = \mathbf{j}$
 - $\nabla \times \mathbf{H} = 0$

6. Determine the polarisation of the wave represented by the equation
 $$\mathbf{E} = E_0 \left(e_x - j e_y \right) e^{-jkz}$$
 - Circularly polarised in the clockwise direction
 - Circularly polarised in the anti-clockwise direction
 - Linearly polarised
 - Elliptical polarisation
7. Find the phasor representing \vec{E} field for a linearly polarised plane wave with \vec{E} in the direction of $\hat{e}_x - \hat{e}_y$, propagating in the $-z$ direction

- $\vec{E} = \frac{E_0}{\sqrt{2}} (\hat{e}_x - \hat{e}_y) e^{jkz}$
- $\vec{E} = \frac{E_0}{\sqrt{2}} (\hat{e}_x - \hat{e}_y) e^{-jkz}$
- $\vec{E} = \frac{E_0}{\sqrt{2}} (-\hat{e}_x - \hat{e}_y) e^{jkz}$
- $\vec{E} = \frac{E_0}{\sqrt{2}} (-\hat{e}_x - \hat{e}_y) e^{-jkz}$

8. For the data given in question 7, find the phasor representation for \vec{H} field.

- $\vec{H} = \frac{E_0}{\sqrt{2}\eta} (\hat{e}_x - \hat{e}_y) e^{jkz}$
- $\vec{H} = \frac{E_0}{\sqrt{2}\eta} (\hat{e}_x - \hat{e}_y) e^{-jkz}$
- $\vec{H} = \frac{E_0}{\sqrt{2}\eta} (-\hat{e}_x - \hat{e}_y) e^{jkz}$
- $\vec{H} = \frac{E_0}{\sqrt{2}\eta} (-\hat{e}_x - \hat{e}_y) e^{-jkz}$

9. A plane wave in vacuum with angular frequency ω propagate in the direction if the unit vector $\vec{u} = A\hat{e}_x + B\hat{e}_y$ where $A=0.65$ and $B=0.76$. The electric field points in the z-direction and has amplitude E_0. The phase angle at the origin is zero. Find the phasor E_z

- $\vec{E} = E_0 \exp[-j\omega\sqrt{\mu\epsilon}(0.65x + 0.76y)]$
- $\vec{E} = E_0 \exp[-j\omega\sqrt{\mu\epsilon}(-0.65x + 0.76y)]$
- $\vec{E} = E_0 \exp[-j\omega\sqrt{\mu\epsilon}(0.65x - 0.76y)]$
- $\vec{E} = E_0 \exp[-j\omega\sqrt{\mu\epsilon}(-0.65x - 0.76y)]$