1. The capacitance per unit length between two coaxial cylinders having radii a & b. (a<b)
 - $\frac{2\pi \varepsilon}{\ln \left(\frac{a}{b} \right)}$
 - $\frac{2\pi \varepsilon}{\ln \left(\frac{b}{a} \right)}$
 - $\frac{2\pi \varepsilon}{\ln (ab)}$
 - None of the above

2. When no time varying fields are present, it is not possible to assign to each position in space a value of electrostatic potential.
 - True
 - False

3. What does the direction of $\nabla \phi$ indicates
 - $\nabla \phi$ do not have any direction
 - Direction in which ϕ increases rapidly
 - Direction in which $\frac{d\phi}{dx}$ increases rapidly
 - Direction in which $\frac{d\phi}{dz}$ increases rapidly

4. Scalar Laplacian operation on the scalar field to produce another scalar field is equivalent to
 - Gradient operation followed by divergence operation
 - Divergence operation followed by gradient operation
 - Divergence operation followed by curl operation
 - Curl operation followed by divergence operation

5. The electric field of a point charge q, located at the origin is given by
 - $\vec{E} = \frac{q}{4\pi \varepsilon |\vec{r}|^3}$
 - $\vec{E} = \frac{q}{4\pi \varepsilon |\vec{r}|^2}$
 - $\vec{E} = \frac{q}{4\pi \varepsilon \mu |\vec{r}|^3}$
 - $\vec{E} = \frac{q}{4\pi \varepsilon \mu |\vec{r}|^2}$

6. Which of the following statement(s) are true
 - Laplace equation is the simplified equation of Poisson’s equation under no charge condition
 - Poisson’s equation is the simplified equation of Laplace equation under no charge condition
 - Laplace and Poisson’s equation are not related to each other
 - All of the above
7. The tangential component of ‘H’ is continuous across a boundary between two materials with different μ.
 - True
 - False

8. Which of the following statement(s) boundary conditions are true, at the interface between two dielectrics
 - \(E_{T1} \neq E_{T2} \)
 - \(E_{T1} = E_{T2} \)
 - \(D_{N1} = D_{N2} \) (if no charges are present on the interface)
 - \(D_{N1} - D_{N2} = \sigma \) (if charges are present on the interface)

9. Which of the following statement(s) boundary conditions are true, at the interface between two conductors
 - \(J_{N1} = J_{N2} \) (for non time varying currents)
 - \(J_{N2} - J_{N1} = -j\omega\sigma \) (for sinusoidally time varying currents)
 - \(J_{N1} = J_{N2} \) (for sinusoidally time varying currents)
 - \(J_{N2} - J_{N1} = -j\omega\sigma \) (for non time varying currents)