Exercises

Assignment #6

1. The divergence of a vector field results in a scalar quantity.
 I. True
 II. False

2. Given a vector \[\overrightarrow{A} = 2\hat{x} + 3\hat{y} + 4\hat{z}, \] the divergence of the vector is
 I. 9
 II. 0
 III. \(\vec{0} \) (Null vector)

3. The divergence of \(\overrightarrow{F} = x^2\hat{x} + x y\hat{y} + 4\hat{z} \) is
 I. 3x
 II. 3x + 4
 III. 3x\hat{x} + 4\hat{z}
 IV. 2x\hat{x} + x\hat{y}

4. In a certain closed region in space, the integral \(\oint \overrightarrow{D} \cdot d\overrightarrow{s} \) is +3 units. This indicates
 I. that the region encloses a net positive charge of 3 units
 II. that the region encloses a net negative charge of 3 units
 III. there is an equal amount of positive and negative charges in the region
 IV. divergence of \(\overrightarrow{D} \) is zero

5. Given scalar field \(f(x, y, z) \) and vector field \(\overrightarrow{D}(x, y, z) \) which of the following operations is not allowed?
 I. \(\nabla f \cdot \overrightarrow{D} \)
 II. \(\nabla \cdot (f\overrightarrow{D}) \)
 III. \(f(\nabla \cdot \overrightarrow{D}) \)
 IV. \((\nabla \times f) \cdot \overrightarrow{D} \)

6. A vector field is solenoidal if
 I. its divergence is zero everywhere
 II. its curl is zero everywhere
 III. the magnitude of its gradient is unity everywhere

7. A vector field is irrotational if
 I. its divergence is zero everywhere
 II. its curl is zero everywhere
 III. the magnitude of its gradient is unity everywhere
8. According to Coulomb's law, the intensity of the electric field of a point charge kept at the origin

I. is proportional to inverse square of the distance from the charge
II. is directly proportional to square of the distance from the charge
III. independent of the test charge

9. The vector field \(\vec{G}(x, y, z) = 2y \hat{x} \) has zero curl.

I. True
II. False

10. The magnetic field \(\vec{H} \) of a current-carrying wire is given by \(\vec{\phi}(K/r) \), where \(K \) is a constant. The curl of \(\vec{H} \) is

I. \(2K \) when \(r \neq 0 \)
II. \(2\pi K \) when \(r \neq 0 \)
III. \(0 \) if \(r \neq 0 \)
IV. is infinite at \(r = 0 \)

11. Given scalar field \(f(x, y, z) \) and vector field \(\vec{D}(x, y, z) \) what is \(\nabla \times f \vec{D} \)?

I. \((\nabla \times f) \cdot \vec{D} \)
II. \((\nabla f) \times \vec{D} \)
III. \((\nabla f) \times \vec{D} + f \nabla \times \vec{D} \)

12. Identify Gauss's law for electrostatics from the following.

I. \(\nabla \cdot \vec{E} = \rho \)
II. \(\nabla \cdot \vec{E} = \rho / \varepsilon_0 \)
III. \(\nabla \cdot \vec{D} = \rho / \varepsilon_0 \)
IV. \(\nabla \cdot \vec{D} = 0 \)

13. Identify Gauss's law for magnetostatics from the following.

I. \(\nabla \cdot \vec{B} = \vec{j} \)
II. \(\nabla \cdot \vec{B} = 0 \)
III. \(\nabla \times \vec{B} = 0 \)
IV. \(\nabla \times \vec{H} = 0 \)

14. Identify Ampere's law for magnetostatics from the following.

I. \(\nabla \times \vec{B} = \mu_0 \vec{j} \)
II. \(\nabla \cdot \vec{B} = 0 \)
III. \(\nabla \times \vec{H} = \vec{j} / \mu_0 \)
IV. \(\nabla \cdot \vec{H} = 0 \)
15. The magnitude of the electric field of a point charge is found to be E_0 V/m. If the charge is now doubled, what happens to the magnitude to the electric field at the same point?

I. Magnitude remains same
II. Magnitude doubles
III. Magnitude halves

16. A charge q is moving in a magnetic field $B\hat{y}$ with uniform velocity along x-direction. The force experienced by the charge is along

I. z-direction
II. x-direction
III. y-direction