Assignment-2

Due on: 19-04-18, 12:00 AM IST

Week-3 Unit: 2

1. Consider a 2-dimensional random walk with step length a and b. The step length a and b are such that $a = 2b$. Determine the probability that the random walk returns to the origin after 3 steps. Calculate the probability that the random walk returns to the origin after 4 steps.

2. Consider a 2-dimensional random walk with step length a and b. The step length a and b are such that $a = b$. Determine the probability that the random walk returns to the origin after 3 steps. Calculate the probability that the random walk returns to the origin after 4 steps.

3. Consider a 2-dimensional random walk with step length a and b. The step length a and b are such that $a = b$. Determine the probability that the random walk returns to the origin after 3 steps. Calculate the probability that the random walk returns to the origin after 4 steps.

4. Consider a 2-dimensional random walk with step length a and b. The step length a and b are such that $a = b$. Determine the probability that the random walk returns to the origin after 3 steps. Calculate the probability that the random walk returns to the origin after 4 steps.

5. Consider a 2-dimensional random walk with step length a and b. The step length a and b are such that $a = b$. Determine the probability that the random walk returns to the origin after 3 steps. Calculate the probability that the random walk returns to the origin after 4 steps.

6. Consider a 2-dimensional random walk with step length a and b. The step length a and b are such that $a = b$. Determine the probability that the random walk returns to the origin after 3 steps. Calculate the probability that the random walk returns to the origin after 4 steps.

7. Consider a 2-dimensional random walk with step length a and b. The step length a and b are such that $a = b$. Determine the probability that the random walk returns to the origin after 3 steps. Calculate the probability that the random walk returns to the origin after 4 steps.

8. Consider a 2-dimensional random walk with step length a and b. The step length a and b are such that $a = b$. Determine the probability that the random walk returns to the origin after 3 steps. Calculate the probability that the random walk returns to the origin after 4 steps.

9. Consider a 2-dimensional random walk with step length a and b. The step length a and b are such that $a = b$. Determine the probability that the random walk returns to the origin after 3 steps. Calculate the probability that the random walk returns to the origin after 4 steps.

10. Consider a 2-dimensional random walk with step length a and b. The step length a and b are such that $a = b$. Determine the probability that the random walk returns to the origin after 3 steps. Calculate the probability that the random walk returns to the origin after 4 steps.