Assignment 2

Due on 2020-02-12, 23:59 EST.

1. The main purpose of adding a third harmonic component in the reference waveform is to _________.
 - Improve harmonic profile of base voltage
 - Increase the DC link voltage distortion
 - Improve harmonic profile of load current
 - Reduce switched frequency of the inverter
 1 point

 No, this answer is incorrect. Correct Answer: 4.

2. A voltage Source Converter (VSC) device in Fig. 1 with \(V_p = 600 \) V feeds a three-phased load (L1-L2-L3) of three phases. What is the fundamental frequency of the load phase voltage if only the harmonic component of magnitude 1/2 fundamental is added to the reference waveform?
 - 50 Hz
 - 60 Hz
 - 150 Hz
 - 120 Hz
 2 points

 No, this answer is incorrect. Correct Answer: 3.

3. For the condition given in question 2, what is the third phase active and reactive power consumed by the load?
 - 100 kVAR and 15.75 kVAR
 - 25.88 kVAR and 15.78 kVAR
 - 25.88 kVAR and 12.44 kVAR
 - 25.88 kVAR and 15.75 kVAR
 2 points

 No, this answer is incorrect. Correct Answer: 1.

4. In question 2, the magnitude of third harmonic component present in the line voltage is __________ V.
 - 264 V
 - 300 V
 - 240 V
 - 600 V
 No, this answer is incorrect. Correct Answer: 2.

5. The magnitude and phase angle of the space vector for 011 switching combination with \(V_p = 780 \) V DC bus is:
 - 780 V, 180°
 - 600 V, 180°
 - 600 V, 90°
 - 595 V, 120°
 2 points

 No, this answer is incorrect. Correct Answer: 3.

6. To realize the reference vector shown in Fig. 2, the correct switching sequence for realizing space vector PWM is:
 - 011-010-011-111-011-010
 - 010-010-011-111-011-010
 - 010-010-011-111-011-110
 - 010-010-011-111-110-180
 1 point

 No, this answer is incorrect. Correct Answer: 2.

7. For conditions given in question 6, for realizing the reference vector \(V_{r3} \), the firing delays of switching vectors \(V_{y1}, V_{y2} \) and zero vectors are ___________ respectively. (Supplying input voltage, \(T_s = 200 \mu s \) and magnitude of \(V_p = 400 \) V).
 - \(T_{1} = 0.75 \mu s, T_{2} = 0.75 \mu s, T_{y1} = 2.6 \mu s \)
 - \(T_{1} = 0.65 \mu s, T_{2} = 0.65 \mu s, T_{y1} = 0.6 \mu s \)
 - \(T_{1} = 0.95 \mu s, T_{2} = 0.75 \mu s, T_{y1} = 2.6 \mu s \)
 - \(T_{1} = 0.65 \mu s, T_{2} = 0.75 \mu s, T_{y1} = 1.8 \mu s \)
 2 points

 No, this answer is incorrect. Correct Answer: 2.