Assignment 5

Due on 2019-08-24, 25:00 IST.

Two single phase transformers 1200 kVA each are connected in parallel to supply 120 phase balanced load at 415V, 50 Hz (lag). The transformer efficiency is 95%. Calculate the current in the primary and secondary windings of the transformers.

For Question 1

A three-phase 132/415 kV transformer is connected in delta-wye configuration with load. Calculate the primary and secondary current and the voltage drop across the transformer.

For Question 2

A three-phase transformer is connected in wye-delta configuration to supply 200 phase balanced load at 415V, 50 Hz (lag). Calculate the primary and secondary current and the voltage drop across the transformer.

For Question 3

A three-phase transformer is connected in wye-delta configuration to supply 200 phase balanced load at 415V, 50 Hz (lag). Calculate the primary and secondary current and the voltage drop across the transformer.

For Question 4

Two single phase transformers A and B are connected in parallel to supply a 1500 kVA load at 415V, 50 Hz (lag). The transformers have a secondary voltage of 415V, 50 Hz (lead). Calculate the primary current and the total power supplied by the transformers.

For Question 5

Two single phase transformers A and B are connected in parallel to supply a 1500 kVA load at 415V, 50 Hz (lag). The transformers have a secondary voltage of 415V, 50 Hz (lead). Calculate the primary current and the total power supplied by the transformers.

For Question 6

A three-phase transformer is connected in delta-wye configuration to supply a 1500 kVA load at 415V, 50 Hz (lag). Calculate the primary and secondary current and the voltage drop across the transformer.

For Question 7

Two single phase transformers A and B are connected in parallel to supply a 1500 kVA load at 415V, 50 Hz (lag). The transformers have a secondary voltage of 415V, 50 Hz (lead). Calculate the primary current and the total power supplied by the transformers.

For Question 8

A three-phase transformer is connected in delta-wye configuration to supply a 1500 kVA load at 415V, 50 Hz (lag). Calculate the primary and secondary current and the voltage drop across the transformer.

For Question 9

Two single phase transformers A and B are connected in parallel to supply a 1500 kVA load at 415V, 50 Hz (lag). The transformers have a secondary voltage of 415V, 50 Hz (lead). Calculate the primary current and the total power supplied by the transformers.

For Question 10

A three-phase transformer is connected in delta-wye configuration to supply a 1500 kVA load at 415V, 50 Hz (lag). Calculate the primary and secondary current and the voltage drop across the transformer.

For Question 11

Two single phase transformers A and B are connected in parallel to supply a 1500 kVA load at 415V, 50 Hz (lag). The transformers have a secondary voltage of 415V, 50 Hz (lead). Calculate the primary current and the total power supplied by the transformers.

For Question 12

A three-phase transformer is connected in delta-wye configuration to supply a 1500 kVA load at 415V, 50 Hz (lag). Calculate the primary and secondary current and the voltage drop across the transformer.

For Question 13

Two single phase transformers A and B are connected in parallel to supply a 1500 kVA load at 415V, 50 Hz (lag). The transformers have a secondary voltage of 415V, 50 Hz (lead). Calculate the primary current and the total power supplied by the transformers.

For Question 14

A three-phase transformer is connected in delta-wye configuration to supply a 1500 kVA load at 415V, 50 Hz (lag). Calculate the primary and secondary current and the voltage drop across the transformer.

For Question 15

Two single phase transformers A and B are connected in parallel to supply a 1500 kVA load at 415V, 50 Hz (lag). The transformers have a secondary voltage of 415V, 50 Hz (lead). Calculate the primary current and the total power supplied by the transformers.

For Question 16

A three-phase transformer is connected in delta-wye configuration to supply a 1500 kVA load at 415V, 50 Hz (lag). Calculate the primary and secondary current and the voltage drop across the transformer.

For Question 17

Two single phase transformers A and B are connected in parallel to supply a 1500 kVA load at 415V, 50 Hz (lag). The transformers have a secondary voltage of 415V, 50 Hz (lead). Calculate the primary current and the total power supplied by the transformers.

For Question 18

A three-phase transformer is connected in delta-wye configuration to supply a 1500 kVA load at 415V, 50 Hz (lag). Calculate the primary and secondary current and the voltage drop across the transformer.

For Question 19

Two single phase transformers A and B are connected in parallel to supply a 1500 kVA load at 415V, 50 Hz (lag). The transformers have a secondary voltage of 415V, 50 Hz (lead). Calculate the primary current and the total power supplied by the transformers.

For Question 20

A three-phase transformer is connected in delta-wye configuration to supply a 1500 kVA load at 415V, 50 Hz (lag). Calculate the primary and secondary current and the voltage drop across the transformer.

For Question 21

Two single phase transformers A and B are connected in parallel to supply a 1500 kVA load at 415V, 50 Hz (lag). The transformers have a secondary voltage of 415V, 50 Hz (lead). Calculate the primary current and the total power supplied by the transformers.

For Question 22

A three-phase transformer is connected in delta-wye configuration to supply a 1500 kVA load at 415V, 50 Hz (lag). Calculate the primary and secondary current and the voltage drop across the transformer.

For Question 23

Two single phase transformers A and B are connected in parallel to supply a 1500 kVA load at 415V, 50 Hz (lag). The transformers have a secondary voltage of 415V, 50 Hz (lead). Calculate the primary current and the total power supplied by the transformers.

For Question 24

A three-phase transformer is connected in delta-wye configuration to supply a 1500 kVA load at 415V, 50 Hz (lag). Calculate the primary and secondary current and the voltage drop across the transformer.

For Question 25

Two single phase transformers A and B are connected in parallel to supply a 1500 kVA load at 415V, 50 Hz (lag). The transformers have a secondary voltage of 415V, 50 Hz (lead). Calculate the primary current and the total power supplied by the transformers.

For Question 26

A three-phase transformer is connected in delta-wye configuration to supply a 1500 kVA load at 415V, 50 Hz (lag). Calculate the primary and secondary current and the voltage drop across the transformer.

For Question 27

Two single phase transformers A and B are connected in parallel to supply a 1500 kVA load at 415V, 50 Hz (lag). The transformers have a secondary voltage of 415V, 50 Hz (lead). Calculate the primary current and the total power supplied by the transformers.

For Question 28

A three-phase transformer is connected in delta-wye configuration to supply a 1500 kVA load at 415V, 50 Hz (lag). Calculate the primary and secondary current and the voltage drop across the transformer.

For Question 29

Two single phase transformers A and B are connected in parallel to supply a 1500 kVA load at 415V, 50 Hz (lag). The transformers have a secondary voltage of 415V, 50 Hz (lead). Calculate the primary current and the total power supplied by the transformers.

For Question 30

A three-phase transformer is connected in delta-wye configuration to supply a 1500 kVA load at 415V, 50 Hz (lag). Calculate the primary and secondary current and the voltage drop across the transformer.

For Question 31

Two single phase transformers A and B are connected in parallel to supply a 1500 kVA load at 415V, 50 Hz (lag). The transformers have a secondary voltage of 415V, 50 Hz (lead). Calculate the primary current and the total power supplied by the transformers.