Assignment 10

1. Prove that a projection operator on the plane is of the form \(P = \frac{1}{2} (I + \hat{n} \cdot \hat{n}) \).

2. Prove that the set of all projection operators on the plane is isomorphic to \(\mathbb{R} \) under the operation of addition.

3. Suppose \(\hat{A} \) is a projection operator on the plane with \(\hat{A}^2 = \hat{A} \). Then \(\hat{A} \) is called a projection operator. Prove that if \(\hat{A} \) is a projection operator on the plane, then there exists a vector \(\vec{v} \) such that \(\hat{A} \vec{v} = \vec{v} \).

4. Prove that if \(\hat{A} \) is a projection operator on the plane, then \(\hat{A}^2 = \hat{A} \).

5. Prove that if \(\hat{A} \) is a projection operator on the plane, then \(\hat{A}^2 = \hat{A} \).

6. Prove that if \(\hat{A} \) is a projection operator on the plane, then \(\hat{A}^2 = \hat{A} \).

7. Prove that if \(\hat{A} \) is a projection operator on the plane, then \(\hat{A}^2 = \hat{A} \).

8. Prove that if \(\hat{A} \) is a projection operator on the plane, then \(\hat{A}^2 = \hat{A} \).

9. Prove that if \(\hat{A} \) is a projection operator on the plane, then \(\hat{A}^2 = \hat{A} \).

10. Prove that if \(\hat{A} \) is a projection operator on the plane, then \(\hat{A}^2 = \hat{A} \).

GROUP 2

11. Prove that if \(\hat{A} \) is a projection operator on the plane, then \(\hat{A}^2 = \hat{A} \).

GROUP 3

12. Prove that if \(\hat{A} \) is a projection operator on the plane, then \(\hat{A}^2 = \hat{A} \).

GROUP 4

13. Prove that if \(\hat{A} \) is a projection operator on the plane, then \(\hat{A}^2 = \hat{A} \).