Fundamentals of Wavelets, Filter Banks and Time Frequency Analysis

Week 5 Assignment

April 3, 2017

1. \(G_0(z) \) and \(G_1(z) \) are low-pass and high pass synthesis side filters respectively and \(H_0(z) \) and \(H_1(z) \) are low-pass and high-pass analysis side filters respectively. Identify the correct relations between them along with the correct property.

 (a) \(G_0(z) = H_1(-z) \), \(G_1(z) = -H_0(-z) \), Alias Cancellation
 (b) \(G_0(z) = H_1(-z) \), \(G_1(z) = -H_0(-z) \), Power Complementarity
 (c) \(G_0(z) = H_1(z) \), \(G_1(z) = -H_0(-z) \), Alias Cancellation
 (d) \(G_0(z) = H_1(z) \), \(G_1(z) = -H_0(-z) \), Power Complementarity

 Solution: (a). Due to alias cancellation we require the following relation to hold true
 \[
 T_1(z) = G_0(z)H_0(-z) + G_1(z)H_1(-z) = 0.
 \]
 Hence if \(G_0(z) = H_1(-z) \), then we get the relation \(G_1(z) = -H_0(-z) \)

2. Which of the following Z-Transforms satisfy the property: \(H_0(e^{-j\omega}) = \overline{H_0(e^{j\omega})} \)

 (a) \(i + z^{-1} \)
 (b) \(1 + z^{-1} \)
 (c) \(\frac{1}{\sqrt{2}}(i + z^{-1}) \)
 (d) \(\frac{1}{\sqrt{2}}(1 + z^{-1}) \)

 Solution: (b). The given property \(H_0(e^{-j\omega}) = \overline{H_0(e^{j\omega})} \) is satisfied by real sequences. Hence (b) is the only sequence for which the relation holds true.

3. \(H_0(e^{j\omega}) \) is a bandpass filter with cutoff frequencies at \(\pi/4 \) and \(3\pi/4 \). Thus \(H_0(-e^{j\omega}) \) is a _____ filter with cutoff frequency(s) at _____?

 (a) Bandpass, \(\pi/4 \) and \(3\pi/4 \)
 (b) Bandstop, \(\pi/4 \) and \(3\pi/4 \)
 (c) Highpass, \(3\pi/4 \)
 (d) Highpass, \(\pi/4 \)
Solution: (a) as \(H_0(-e^{j\omega}) = H_0(e^{j(\omega+\pi)}) \) and thus the frequency shifts by \(\pi \) making the bandpass filter as bandstop.

4. To derive the second member of the Daubech filterbank family, we wrote the following condition:

\[
(-1)^D H_0(z)H_0(z^{-1}) - H_0(-z)H_0(-z^{-1}) = c_0
\]

What should \(D \) be?
(a) 1
(b) 2
(c) 3
(d) 4

Solution: (c). \(D \) for nth member of Daubech wavelet family will be \(2n - 1 \).

5. For the third member of the family, we’ll get \(D = ? \)
(a) 2
(b) 3
(c) 4
(d) 5

Solution: (d) \(D \) for nth member of Daubech wavelet family will be \(2n - 1 \).

6. Let \(h(n) = 1, -1/2, 1/4, -1/8, \ldots \) . Its z transform is represented by \(H_0(z) \). Then, the constant term in \(H_0(z)H_0(z^{-1}) \) is
(a) 1
(b) 2
(c) 4/3
(d) \(\infty \)

Solution: (c). \(H(z)H(z^{-1}) = Z(h[n] * h[\neg n]) \). Thus the constant term of polynomial is given by \(\sum h^2[n] = 1 + 1/4 + 1/16 + \ldots = \frac{4}{3} \)

7. Which of the following transfer functions have the same frequency magnitude response?
(a) \(1 + z^{-1}, 1 - z^{-1} \)
(b) \(1 + z^{-1}, z^{-1} \)
(c) \(1 + z^{-1}, z^{-3} + z^{-4} \)
(d) \(z^{-1} + z^{-2}, 1 - z^{-1} \)

Solution: (c). \(1 + z^{-1} = z^3(z^{-3} + z^{-4}) \) Time delay only changes phase part of the frequency response.
8. If \(f(z) + f(-z) = g(z) \) where \(f(.) \) is a polynomial function, then \(g(.) \)
 (a) is a constant.
 (b) has only non zero even powers
 (c) has only non zero odd powers
 (d) must have no constant term

Solution: b. \(f(z) + f(-z) \) contains the even powers only as the odd
powers are cancelled out by each other.

9. Let \(K(z) + K(-z) = z^{-4} \) and \(K(z) = H_0(z)H_0(z^{-1}) \). Then \(\sum h[n]h[n - 2] = ? \)
 (a) Information insufficient
 (b) 0
 (c) 1/2
 (d) \(\sum h^2[n] \)

Solution (b). We know from given condition that \(K(z) \) has no power of
\(z^{-2} \). This implies that \(\sum h[n]h[n - 2] = \) coefficient of \(z^{-2} \) in \(K(z) \) is 0.

10. Second member of the Daubechy filterbank family has:
 (a) 2 roots at \(z = -1 \)
 (b) 2 roots at \(z = +1 \)
 (c) 3 roots at \(z = -1 \)
 (d) 3 roots at \(z = +1 \)

Solution: (a). As an extension from the Haar wavelet we impose an extra
root at \(z = -1 \) to find the second member of the family.

11. If \(x[n] = [1, -1/2] \). Thus, let \(Y(z) = log(X(z)) \).
 Find the corresponding sequence \(y[n] \). (Hint: \(log(1 - x) = - \sum_{k=1}^{\infty} \frac{x^k}{k} \) for
\(|x| < 1 \).

Note: The first element in the sequence is the zeroth element
 (a) \([0, \frac{1}{2}, -\frac{1}{4}, \frac{1}{8}, \ldots] \) for \(|z| > \frac{1}{2} \)
 (b) \([0, -\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots] \) for \(|z| > \frac{1}{2} \)
 (c) \([0, -\frac{1}{2}, -\frac{1}{4}, \frac{1}{8}, \ldots] \) for \(|z| < \frac{1}{2} \)
 (d) \([0, \frac{1}{2}, -\frac{1}{4}, -\frac{1}{8}, \ldots] \) for \(|z| < \frac{1}{2} \)

Solution: (b). \(Y(z) = log(1 - \frac{1}{2}z^{-1}) = - \sum_{k=1}^{\infty} \frac{(\frac{1}{2}z^{-1})^k}{k} \) for \(|\frac{1}{2}z^{-1}| < 1 \). Thus
the corresponding sequence of \(Y(z) \) is (b).

12. If the third member of the Daubechy filterbank wavelet family is given by
 \(h = [h_0, h_1, h_2, h_3, ..., h_n, ...] \), then which of the following statements are
true?
 (a) \(h_n = 0 \) for \(n \neq 6 \)
(b) \(h_n = 0 \) for \(n \geq 6 \) and \(n \geq 3 \)
(c) \(h_n = 0 \) for \(n \geq 5 \)
(d) \(h_n = 0 \) for \(n \geq 5 \) and \(n \geq 2 \)

\textbf{Solution} (c). The length of the third member of the wavelet family is 6, hence \(h_n = 0 \) for \(n \geq 5 \).

13. Second member of the Daubechy filterbank family annihilates ______

(a) polynomials of degree 1 in the low pass filter.
(b) polynomials of degree 2 in the low pass filter.
(c) polynomials of degree 1 in the high pass filter.
(d) polynomials of degree 2 in the high pass filter.

\textbf{Solution}: (c). Haar wavelet annihilates a zero degree polynomial in the high pass filter and hence the second member is designed to annihilate degree 1 polynomials and hence is a 'stronger' high pass filter.

14. Which of the following is a minimum phase system?

(a) \(1 + 0.99z^{-1} \)
(b) \(0.99 + z^{-1} \)
(c) \((1 + 0.99z^{-1})(1 + 2z^{-1}) \)
(d) \((1 + z^{-1})(1 + 2z^{-1}) \)

\textbf{Solution}: (a). Minimum Phase system is such that its inverse is causal and stable. Thus the poles and zeros of the system lie inside the unit circle.

15. Consider \(h_0(t) \) to be a signal of support \(L \). Define \(h_n(t) := h_0(2^n t) \). Thus the signal \(y(t) = h_0(t) * h_1(t) * h_2(t) \ldots \) has a length equal to

(a) \(3L/2 \)
(b) \(5L/4 \)
(c) \(7L/4 \)
(d) \(2L \)

\textbf{Solution}: (d). Convolution of two sequences leads to output of length equal to sum of each sequence. Thus total length of \(y(t) = L + L/2 + L/4 + \ldots = 2L \).