Week 5 Assignment 5
The due date for submitting this assignment has passed.

Due on 2021-09-01, 23:59 IST.

As per our records you have not submitted this assignment.

1. Understand the following fact: any of the point-processed model for spatial-standard evaluation?

2. The question is multiple-choice, where a = 0, x

3. Consider the following two statements about the degree reduction problem:

 (a) The degree-reduction problem can be solved non-interactively.
 (b) The degree-reduction problem consists of computing a scalar a, 1 if Shannor sharing of a is involved.

Which of his followings option is correct?

 - Both (a) and (b) are correct
 - Both (a) and (b) are incorrect
 - (a) is correct but (b) is incorrect
 - (b) is correct but (a) is incorrect

No. the answer is incorrect.

4. Accepted Answer

 (a) is correct but (b) is incorrect

5. Let \(\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3 \) be \(\mathcal{P} = \{ 1, 2, \ldots, n \} \) parties out of which an adversary corrupts \(c \) parties. In order to generate correlated randomness [Referees, Triplets, the parties perform the following protocol denoted as 'Shannor':

 - Protocol 'Shannor' generates an \((a, b, c)\)-Shannor sharing of a multiplication triple \((a, b, c)\), such that \(c = a \cdot b \) but \(a \) and \(b \) are not uniformly random field elements.

 Protocol 'Shannor' requires communication of \(O(n^2)\) field elements.

 Protocol 'Shannor' can be performed with \(O(n)\) rounds of communication.

 No. the answer is incorrect.

 Accepted Answer

 Protocol 'Shannor' requires communication of \(O(n^2)\) field elements.

 Protocol 'Shannor' can be performed with \(O(n)\) rounds of communication.

6. Let \(\mathcal{H}_1, \mathcal{H}_2 \) denote the set of all possible messages exchanged between two parties in protocol for computing OR of input bits \(b_1 \) and \(b_2 \) with perfect security. Consider the following statements:

 \[(a) \; \mathcal{H}_1 \cap \mathcal{H}_2 = \emptyset \]

 \[(b) \; \mathcal{H}_1 \cap \mathcal{H}_2 = \{0,1 \} \]

 Choose the most appropriate option:

 - Only (a) true
 - Only (b) true
 - Both (a) and (b) are true
 - Both (a) and (b) are false

 No. the answer is incorrect.

 Accepted Answer

 Both (a) and (b) are true.

7. Let \(\mathcal{P}_1, \mathcal{P}_2, \mathcal{P}_3 \) be \(\mathcal{P} = \{ 1, 2, \ldots, n \} \) parties out of which an adversary corrupts \(c \) parties. These parties hold an \((a, b, c)\)-sharing of two inputs \(a \) and \(b \) denoted as \(\mathcal{S}(a, b, c) \) and \(\mathcal{S}(a', b', c') \) respectively and wish to compute a random \((a, b) \)-sharing of the product \(c = a \cdot b \) denoted as \(\mathcal{S}(a, b) \) such that each new additional information about \(a \) and \(b \) is leaked to the adversary.

 Assume additionally that the parties hold the \((a, b)\)-sharing of an \(\mathcal{S}(a, b)\) unknown uniformly random field element \(r \) defined as \(r \) and hold \((a, b, c)\)-shares of the same element \(r \) denoted as \(r' \). The parties perform the following protocol denoted as 'Mulsh':

 (1) The parties locally compute \((a, b, c)\)-shares of the value \(v = a \cdot b \) denoted as \((a', b', c') \) by multiplying their shares of \(a \) and \(b \) that is \((a', b', c') = (a \cdot b, b', c') \).

 (2) The parties send their \((a, b)\)-shares of \(v \) to the party \(\mathcal{P}_1 \).

 (3) \(\mathcal{P}_1 \) reconstructs the secret \(v \) using the shares it receives from \(\{ \mathcal{P}_1 \} \) and its own share and sends \((a, b) \)-shares to all parties.

 (4) All the parties now locally compute \((a, b)\)-shares of \(v = a \cdot b \) computing:

 \[a' = a \cdot b \]

 Note that all the sharings used above are Shamir sharings.

 Which of the following options is correct regarding Mulsh?

 - If \(\mathcal{P}_1 \) is a corrupt party, then the protocol Mulsh leaks the value of \(a \) and \(b \) to the adversary.

 The protocol Mulsh solves the degree reduction problem, that is, after running Mulsh, the parties are able to obtain a random \((a, b)\) Shamir sharing of \(c = a \cdot b \) given a \((a, c)\) Shamir sharing of \(a \) and \(b \) without leaking any information about \(a \) or \(b \) if the value \(r \) is known to the adversary then the protocol Mulsh does not leak any additional information about \(a \) and \(b \) respectively.

 No. the answer is incorrect.

 Accepted Answer

 Protocol 'Shannor' solves the degree reduction problem, that is, after running Mulsh, the parties are able to obtain a random \((a, b)\) Shamir sharing of \(c = a \cdot b \) given a \((a, c)\) Shamir sharing of \(a \) and \(b \) without leaking any information about \(a \) or \(b \) if the value \(r \) is known to the adversary then the protocol Mulsh does not leak any additional information about \(a \) and \(b \).