1) Let \((X, Y, K, H)\) be the hash family with \(|X|=2^{256}\) and \(|Y|=2^{32}\). Then the number of all possible hash functions in this family is

- \(2^{261}\)
- \(2^{261}\)
- \(2^{261}\)
- \(2^{40}\)

No, the answer is incorrect.
Score: 0
Accepted Answers:
- \(2^{261}\)

2) Assume random oracle model. Suppose that \(h \in F^{(X,Y)}\) is chosen randomly, and let \(X_0 \subseteq X\).
Suppose that the values \(h(x)\) have been determined (by querying the oracle for \(h\)) if and only if \(x \in X_0\).
Let \(|X|=N\) and \(|Y|=M\), \(N \geq 2M\). Then chose the correct statement.

- \(\Pr[h(x)=y]=1/M\) for all \(x \in X \setminus X_0\) and all \(y \in Y\).
- \(\Pr[h(x)=y]=1/N\) for all \(x \in X \setminus X_0\) and all \(y \in Y\).
- \(\Pr[h(x)=y]=1/M-|X_0|\) for all \(x \in X \setminus X_0\) and all \(y \in Y\).
- \(\Pr[h(x)=y]=1/N-|X_0|\) for all \(x \in X \setminus X_0\) and all \(y \in Y\).

No, the answer is incorrect.
Score: 0
Accepted Answers:
- \(\Pr[h(x)=y]=1/M\) for all \(x \in X \setminus X_0\) and all \(y \in Y\).

3) Let \((X, Y, K, H)\) be a hash family with \(|Y|=4096\) and \(X_0 \subseteq X\) such that \(|X_0|=32\).
Suppose that \(\epsilon\) be the average-case success probability for finding preimage. Then the best estimate of \(\epsilon\) is

- \(2^{-12}\)
- \(2^{-17}\)
- \(2^{-5}\)
- \(2^{-7}\)

No, the answer is incorrect.
Score: 0
Accepted Answers:
- \(2^{-7}\)
4) Let a compression hash function be collision resistant. Then the hash function constructed by Merkle-Damgård algorithm
 - is collision resistant.
 - is not collision resistant.
 - may or may not be collision resistant.
 - none of them.

No, the answer is incorrect.
Score: 0
Accepted Answers:
is collision resistant.

5) Suppose that \(n = m > 1 \) and \(h : \mathbb{Z}_2^m \to \mathbb{Z}_2^m \) is defined by \(h(x) = x^2 + ax + b \mod 2^m \). Then second preimage
 - can be found only by solving a quadratic equation.
 - cannot be found.
 - can be found by without solving a quadratic equation.
 - Sometimes can be found by solving a linear equation but not always.

No, the answer is incorrect.
Score: 0
Accepted Answers:
can be found by without solving a quadratic equation.

6) Suppose that \(h : X \to Y \) is a hash function such that it is possible to find \(x, x' \in X \) with \(x \neq x' \) such that \(h(x) = h(x') \). Then
 - \(h \) is not preimage resistant.
 - \(h \) is not second preimage resistant.
 - \(h \) is collision resistant but may or may not be second preimage resistant.
 - \(h \) is not collision resistant and not second preimage resistant.

No, the answer is incorrect.
Score: 0
Accepted Answers:
h is not collision resistant but may or may not be second preimage resistant.

7) Find the correct statement among the following.
 - If a hash function is collision resistant then it is preimage resistant.
 - If a hash function is second preimage resistant then it is collision resistant.
 - If a hash function is collision resistant then it is second preimage resistant.
 - If a hash function is preimage resistant then it is second preimage resistant.

No, the answer is incorrect.
Score: 0
Accepted Answers:
If a hash function is collision resistant then it is second preimage resistant.

8) Suppose that \(h : X \to Y \) is a hash function considered in random oracle model. Suppose that \(Q \) queries are allowed and \(Q \) is small compared to \(M = |Y| \). Then the best estimate of the average case success probability of find-second-preimage algorithm is
 - \(Q / M \)
 - \(Q / (M-1) \)
 - \((Q-1) / (M-1) \)
 - \((Q-1) / M \)

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Q-1) / M

https://onlinecourses-archive.nptel.ac.in/noc17_cs36/unit?unit=32&assessment=46
9) Let $B = \{0,1\}$. Suppose that $f: B^{100} \rightarrow B^{50}$ is a collision resistant hash function.
Define $h: B^{200} \rightarrow B^{50}$ such that $h(x) = f(f(x') \| f(x''))$ for all $x \in B^{200}$,
where $x = x' \| x''$, $x', x'' \in B^{100}$. Then

- h is not collision resistant.
- h may or may not be collision resistant.
- h is collision resistant.
- None of them.

No, the answer is incorrect.
Score: 0
Accepted Answers:
h is collision resistant.

10) Suppose you have a 40-bit message digest. Q is the smallest number of valid pairs required to obtain collision with probability 0.5. Which one of the following with the best estimate of Q?

- 2^{20}
- 2^{40}
- 2^{80}
- 2^{10}

No, the answer is incorrect.
Score: 0
Accepted Answers:
2^{20}