Assignment 6

The due date for submitting this assignment has passed.
As per our records you have not submitted this assignment.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Correct Answer</th>
<th>Solution</th>
</tr>
</thead>
</table>
| 1. How many times must we roll a die in order to be sure to get the same score? | 6 | 3 | Solution: 6
| 2. Let $P(x) = x^2 - 2$. Then base step is | 7 | $n = 1$ | Solution: 2
| 3. Let $A = \{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}$ How many integers must be chosen from A, such that there exists two integers whose sum is 17? | 7 | 6 | Solution: 6
| 4. Let $A = \{1, 2, 3, \ldots\}$. What should be the minimum value of k such that there are at least 2 numbers having same remainder when divided by k? | 7 | 3 | Solution: 3
| 5. For which integer $n \geq 0$, $0.111\ldots \times 10^n$ is divisible by 9 | 7 | $n = 3$ | Solution: 3
| 6. A box contains 6 blocks of white color and 8 blocks of black color all are matched. A man takes one at random in dark. How many minimum socks must he take out to be sure that he has at least 2 socks of the same color? | 7 | 2 | Solution: 2
| 7. Let $P(x)$ be a statement, where k is natural numbers. $P(k)$ is true and $P(k+1) \Rightarrow P(k+1)$, for some natural number k. Then $P(k)$ is true for all k. | 7 | True | Solution: True
| 8. Let $f : X \rightarrow Y$ be a function such that $X \subseteq Y$. Then by Pigeonhole Principle, we can conclude that | 7 | False | Solution: False
| 9. What is the least value of k such that there must be at least k numbers from $\{1, 2, 3, \ldots\}$, with a sum equal to 9? | 7 | 6 | Solution: 6
| 10. Let $P(x) = x^2 - x$ is divisible by x, for all $x \in N$. $P(x)$ is false, because | 7 | True | Solution: True

Due on 2020-03-11, 23:59 IST.